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Preface

The book titled “Mathematical summary for Digital Signal Processing Applications
with Matlab” consists of Mathematics which is not usually dealt in the DSP core
subject, but used in the DSP applications. Matlab Illustrations for the selective topics
such as generation of Multivariate Gaussian distributed sample outcomes, Optimiza-
tion using Bacterial Foraging etc. are given exclusively as the separate chapter for
better understanding. The book is written in such a way that it is suitable for Non-
mathematical readers and is very much suitable for the beginners who are doing
research in Digital Signal Processing.

E.S. Gopi
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Chapter 1
Matrices

One-dimensional array representation of scalars are called vector. If the elements are
arranged in row wise, it is called Row vector. In the same fashion, if the elements of
the vector are arranged in column wise, it is called column vector. Two-dimensional
array representations of scalars are called matrix. Size of the matrix is represented as
R x C, where R is the number of rows and C is the number of columns of the matrix.
Scalar elements in the array can be either complex numbers (C) or the real numbers.
(R). The column vector is represented as X . The Row vector is represented as X T

Example 1.1. Row Vector with the elements filled up with real numbers
[2.89 21.87 100]

Column Vector with the elements filled up with Complex numbers.

1+
=J
947
0

Matrix of size 2 x 3 with the elements filled up with real numbers

Matrix of size 3 x 2 with the elements filled up with complex numbers

—Jj 147
=2j 5
0 J
E.S. Gopi, Mathematical Summary for Digital Signal Processing 1

Applications with Matlab, DOI 10.1007/978-90-481-3747-3_1,
© Springer Science+Business Media B.V. 2010



2 1 Matrices

1.1 Properties of Vectors

Scalar multiplication of the vector X is given as ¢ X, where c € R.

Example 1.2.
I+ 2425
7 i
2 % J = /
9+7j 18 + 14;
0 0

Linear combinations of two vectors X; and X, are obtained as cl* X1+ 02*&,
where cl, c2 ¢ R

Example 1.3.
14+ 11— 5—j
26| T k| ! =]
9+7j —7j 18—17j
0 0 0

Example 1.4. Graphical illustration of summation of two vectors [3 1] and [1 2] to
obtain the vector [4, 3] is given below (Fig. 1.1). (Recall the Parallelogram Rule of
addition).

Note that the first and second elements of the vector are represented as the vari-
able X1 and X2, respectively. The variables X1 and X2 can be viewed as the random
variables.

X2

(4.3)

(1.2)

@3.1)

X1

Fig. 1.1 Graphical illustration of the summation of two vectors
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1.2 Properties of Matrices

(a) Matrix addition
Let the Matrix A be represented as

ail diz2 4aiz ... dim
azy dz2 433z ... dam
asy dsz dsz3z ... dzpm
dpl dp2 Ap3 ... dpm

Also let the Matrix B be represented as

b11 b1z b13 blm
b21 b22 b23 me

b3l b32 b33 b3m

bnl bn2 bn3 : bnm

a1 +bu anx+biz aiz+biz ... aim+bim
azi +ba1 axx+ by axz+baz ... a4+ bopm
=S A+B=|a31+bs1 axn+bx azx+biz ... azm+bm
Anm +bnm Anm +bum Anm +bam ... bum + bam

Note that (i,j)th element of the matrix ‘A’ is represented as a;;. Matrix ‘A’ in
general is represented as A = [a;]
LetC=A+B = [CU] = [a,,] + [b,j]
(b) Scalar multiplication
Letce Corce R
= cA = c[a;] = [cay]

(¢) Matrix multiplication
The product of the matrix ‘A’ with size n X p and the matrix ‘B’ with size p xm
is the matrix C of size n X m. The elements of the matrix C are obtained as

follows.
C11 C12 €13 ... Cim
C21 C22 €23 ... Com
C= C31 C32 €33 ... C3m
Cnl Cn2 Cn3 ... Cnm

Where cij = ailblj + aizsz + ai3b3j + ...+ ai,,b,,j
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Example 1.5. Consider the matrix A and B of size 2 x 3 and 3 x 3, respectively

ail a2 as
A =
| d21 d22 423 |
bii b1z bis
B = (b1 by b3
| b31 b3z b33 |

Let the matrix C = AB

_ ayby + apby + aizbir  anbiy +anbyn + aizby  anbiz + apbys + azbs;
az by + anby + axbsi  axbiy + axnby + axbyy  axbiz + anbys + axbs;

The matrix A can be viewed as A = [a; as a3], where

ar aiz ais
ay = ay = a3 =
- |:a21] - |:a22] - az3s
by

Similarly the matrix B can be viewed as B = , where

b
bs,

by =[b11 b1z bi3]
by = [b21 by D23
b3 = [b31 b3y b33]

So the matrix C = AB can also be represented as a; by +az ba + az bs
Also the matrix AB can be obtained as

[bll (a1) + bai(a2) + bs1(as) bia(ar) + ban(az) + b3a(as) biz(ar) + bas(az) + b33(a_3)]

(d) Matrix multiplication is associative

Let A and B be the two matrices, then A (BC) = (AB) C.
(e) Matrix multiplication is non-commutative

Let A and B be the two matrices, then AB # BA
(f) Block multiplication

Consider the matrix P as shown below

a1 a2 aiz b bz
ar1 Az azsz by by
cii ¢z c13 din diz

€21 €22 €23 dri da

€31 €32 €33 d3 dix
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(@)

(h)
(@

The above matrix ‘P’ can be viewed as the matrix with each element filed up
with matrix as mentioned below. This way of representing the matrix is called

as Block matrix.
|:6111 aiz a13i| |:b11 blz]
daz1 dzz dz3 ba1 b

C11 C12 C13 dyy diz
C21 €22 €33 dr1 dx
C31 €32 €33 di1 dz

In short the matrix P is represented as

i o]

Similarly consider the matrix Q represented as

E
F
Then the matl’iX PQ iS represented as

[AE + BF)]
[[CE + DF]]

This way of multiplying two Block matrices is called as Block multiplication.
Transpose of the matrix
The transpose of the matrix A is the matrix B whose elements are related as
follows.

aij = bﬁ

Note that transpose of the Block matrix
[[A] [B]}
(€] D]

) )

is given as

Square matrix

The matrix with number of Rows is equal to the number of Columns.
Identity matrix

The square matrix with all the elements is filled up with zeros except the diag-
onal elements which are filled up with all ones.
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(j) Lower triangular matrix
The square matrix with all the elements is filled up with zeros except the
elements in the diagonal and below the diagonal which are filled up at least
one non-zero elements.
In other words, Lower triangular matrix is the matrix with zeros in the up-
per triangular portion of the matrix with at least one non-zero element in the
remaining portion.

(k) Upper triangular matrix
The square matrix with all the elements is filled up with zeros except the ele-
ments in the diagonal and above the diagonal which are filled up at least one
non-zero elements.
In other words, Upper triangular matrix is the matrix with zeros in the Lower
triangular portion of the matrix with at least one non-zero element in the re-
maining portion.

() Diagonal matrix

The square matrix with all the elements is filled up with zeros except the di-
agonal elements which are filled up with at least one non-zero element in the
diagonal

(m) Permutation matrix
Permutation matrix is one when multiplied with the matrix interchanges the
elements of the matrix column wise or row wise. If the matrix is multiplied by
the permutation matrix, columnwise interchange of the elements of the matrix
occurs. Similarly if the permutation matrix is multiplied by some matrix, row
wise interchange of the elements of the matrix occurs.

1 23
Example 1.6. Arbitrary matrix A= |4 5 6
789
1 00
Arbitrary Permutation matrix P = [0 0 1
010
1 32
AxP=14 6 5
79 8

Note that the elements of the second column and third column is interchanged
using the operation A*P.

1 3
PxA=1|7 9
4 6

& v oo N

Note that the elements of the second row an:
operation P*A.

P*P*...P is always some permutation matrix. Also note that the iden-
tity matrix is the trivial permutation matrix, which when multiplied with any

third row is interchanged using the
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arbitrary matrix will end up with the same matrix. Also note that the inverse of
any arbitrary permutation matrix is always the permutation matrix.

(n) Inverse of the matrix
Inverse of the matrix is defined only for the square matrix. The matrix A is
defined as the inverse of the matrix B if AB = BA = I, where ‘I’ is the identity
matrix. If there exists the inverse matrix for the particular square matrix A, then
that matrix ‘A’ is known as the Invertible matrix. Otherwise it is called as the
non-invertible matrix.

1.3 LDU Decomposition of the Matrix

The matrix A as shown below can be represented as the product of three matrices
Lower triangular matrix (L) with all ones in the diagonal elements, Diagonal ma-
trix (D) and the upper triangular matrix (U) with all ones in the diagonal elements.

123

Example 1.7. LDU Decomposition of the matrix A = | 2 3 4
346

1 00][1 23 1 23

=(010|[2 3 4|=|23 4

00 1]]3 46 346

Note: Row operation on the Identity matrix in the LHS and the same operation
done on the RHS will not affect the equality.

R2- > R2-2*R1
R3- > R3-3"R1
(1 0 0][1 2 37 1 2 3
=|(-2 10|23 4]=(0 -1 -2
|-3 0 1] [3 4 6] 0 -2 -3
[1 0 0][1 0 O][1 2 3 1 2 3
=(010|[-210[]|23 4[(=[0 -1 -2
10 0 1J[-3 0 1]|[3 46 0 -2 -3
Again applying Row operation we get
R3- > R3-2"R2
100 1 00[[123 1 2 3
=|(010|[-210]|234|=(0 -1 -2
0-21]1]1-3 0 1][346¢6 0 0 1
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In general, after applying the Row operation the matrix equation will in the form as
given below
[LallLn—]...[Ls][L2][L1][A] = [U]

Where

Ly,Ly,Ls3,Ly,...L, are the lower triangular matrices with diagonal elements
filled up with ones.

‘A’ is the actual matrix

‘U’ is the upper triangular matrix

So the matrix A can be represented as the product of A = L;!... L, 7!
Ly—y™ ' Ly™'U
In our example

Note: In General the inverse of the matrix with the characteristics given below
can be obtained by direct observation.
Characteristics:

(a) Diagonal elements filled up ones
(b) One column below diagonal filled up atleast one non-zero elements
(c) All other elements filled up with zeros

Example 1.8. Consider the matrix L, given below that satisfies all the characteris-
tics mentioned above

1 0 0 0 O
ap 1 0 0 O
Ly= a 0 1 0 0
az 0 0 1 O
ag 0 0 0 1

The inverse of the matrix L, is obtained by direct observation as

1 0 0 0 0
—a; 1 0 0 0

L, '= —a 0 1 0 0
—az 0 0 1 0

0 0 0 1

—ady
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10 O 1 00 1 23 12 3 7
Consider | 0 1 0 -2 10 234 (1=]0 -1 -2
0 21 -301 3406 L0 0 1 |
(1 2 37 1007100712 3
=234 |=210 010 0 -1 =2
L3 4 6 ] L3 01 ]J]L021J[0O0 1
1 2 37] 1007712 3
=234 |=210 0 -1 -2
L3 4 5] L3 2 1]L0O0 1
1 2 3
The matrix | 0 —1 —2 | can be represented as the product of the diagonal ma-
00 1

trix and the upper triangular matrix with all the elements in the diagonal are one as
given below.

12 3 10 O 1 23
0 -1 2 |=]10-10 01 =2
00 1 00 1 0 01

Note: In General the Upper triangular matrix with non-unity diagonal ele-
ments can be represented as the product of the diagonal matrix and the Upper
triangular matrix with ones in the diagonal as mentioned below

Example 1.9. Consider the Upper triangular matrix with non-unity diagonal ele-

ab c
ments | 0 d e | which can be represented as the product of
00 f
a b c
a b c a 0 0 - -
a a a
0de [=]04dO 0 4 e
d d
00 f 00 f 00 %
a b c a 0 0 1 g <
=[0de |=|04dO0 01 7
00 f 00 f 00 1
1 23
Thus the invertible matrix A = | 2 3 4 [ isrepresented as the product of Lower
346

triangular matrix with ones in the diagonal, diagonal matrix and the upper triangular
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matrix with ones in the diagonal as shown below

1 23 1 00 10 O 1 23
234 |=1210 0 —-10 01 -2
3406 321 00 1 0 01

1.4 PLDU Decomposition of an Arbitrary Matrix

In general an arbitrary matrix A can be represented as the product of the permutation
matrix (P), Lower triangular matrix with ones in the diagonal, diagonal matrix (D)
with non-zero diagonal elements and the Upper triangular matrix with all ones in
the diagonal. If the permutation matrix is the identity matrix, then the matrix A is
represented as the product of L, D, U (see Section 1.3)

1
Example 1.10. PLDU Decomposition of the matrix A = | 2
3

~ B~ DN
N B~ W

1 00 1 23 1 23
=1010 244 (=244
001 346 3406

Note: Row operation on the Identity matrix in the LHS and the same operation
done on the RHS will not affect the equality.

R2- > R2-2*R1
R3- > R3-3*R1
1 00 1 23 1 2 3
= -2 1 244 |=100 =2
-3 01 3406 0 -2 -3
12 3
Note that the matrix [ 0 0 —2 | cannot be further subjected to mere row op-
0 -2 -3

eration to obtain the upper triangular format. Hence the following technique using
permutation matrix is used.
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1 00 1 00 1 23
=]1010 001 2 4 4
001 010 346

11

1 23
3406
2 4 4

Now applying the Row operation on the identity matrix, we get

R2- > R2-3*R1
R3- > R3-2*R1
1 00 1 00 1 23
-3 10 :| 001 :| 2 4 4 | =
-2 01 010 346
1 0071 2 37 1 00
=001 |: 2 44 ((=]1310
01 0]L3 4 6 2 01
1 00
Note that the inverse of the matrix | —3 1 0 |[is
-2 01
1 23 1 00 1 00
=244 |=]001 310
346 010 2 01
1 00 1
Note that the inverse of the matrix |: 001 |is| O
010 0
1 23 1 00 1 00 10
=244 |=]001 |: 310 0
3406 010 2 01 00
1 23
Thus the matrix | 2 4 4 | is represented as the
3406
1 00 1
tion matrix | 0 O 1 |, Lower triangular matrix |: 3
010 2
1 0 1 2
0 :| and the Upper triangular matrix | 0 1
0 0 00

12 3
0 —2 -3
00 -2
12 3
0 —2 -3
1Loo =2
100
310
20 1
12 3
0 —2 -3
00 -2
00

01

11

0 123
0 01 3/2
21Lo o1

product of the permuta-

0
0 | diagonal matrix
1

w © = O

3/2
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1.5 Vector Space and Its Properties

1. Vector space V over a field F is a set with two operation ‘+’ (addition) and ‘.
(scalar multiplication) such that the following condition holds

x,yeVitenx+yeV
x € V,ce F,thenc.x € F

2. Properties of the vector space:

(a) Commutative addition
Forallx,y eV, x4+y=y+x
(b) Associatively
x+y)+z=x+0O+2

(c) Additive identity
There exists an element z € V such that z + x = x forall x € V. zis called
Zero vector

(d) Additive inverse
For each x € V, there exists y € V suchthat x + y =z

(e) Thereexists 1 € F,suchthat1.x = x forallx € V

(f) Foralla,b € Fand x € V a.(b.x) = (ab).x

(g) Foralla e Fandx,yeVa.(x +y)=ax +a.y

(h) Foralla,b € Fandx € V (a+b).x =a.x +b.y

3. Subspace S of the vector space V is a subset of the V such that

x,yeS,thenx+yeS
xeS,ce F,thenc.x €S

Example 1.11. 1. Set of all real numbers R over the field R is the vector space.

2. Set of all the vectors of the form [x, y], where x € R, y € R, over the field R is
the vector space which is represented in short as R?.
In general R” is the vector space over the field R which is the set of all the vectors
of the form [x; x2 x3 x4 ... X], where x1,x2,x3,...xn € R.

1.6 Linear Independence, Span, Basis and the Dimension
of the Vector Space

1.6.1 Linear Independence

Consider the vector space ‘V’ over the field F. vy, va, v3, va..., v, € V are said
to be independent if the linear combinations of the above vectors [(i.e.) a1 vi +
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0y Vo + 3 V3 + Q4 V4...+ oy vy, Wwhere o, a0, @1, ... € R] is the zero vector
only wheno; = =3 =g =+ = 0.

Suppose there exists at least one non-zero scalar ay, o, a3,...0, € R such
that oyvy 4+ vy 4+ @3v3 + aqvs ... + ayv, = 0, then any one arbitrary vector
among the list vi,v5,v3, V4 ..., Vv, can be represented as the linear combinations of
the remaining vectors.

For instance if all the scalars (o, o2, a3,...0, € R) are non-zero, then the
vector v is represented as the linear combinations of other vectors as shown below.

o o o (07
S -
o1 aq (251 o1

This implies that the vector v; depends upon the other vectors va, v3, v4..., V.
Similarly any vector in the lists can be represented as the linear combinations of
other vectors. This implies that the vectors vy, vz, v3, va4...,V, are dependent
vectors.

1.6.2 Span

Consider the vector space ‘V’ over the field F. Let v, vo, v3, v4...,v, € WV
vectors. If all the vectors in the vector space V can be represented as the linear com-
binations of the above listed vectors, then the listed vectors are called the spanning
set of the vector space ‘V’.

1.6.3 Basis

Spanning set of the vector space ‘V’ which consists of the minimum number of
independent vectors are called the basis of the vector space ‘V’.

1.6.4 Dimension

Number of vectors in the Basis is called the dimension of the vector space ‘V’.

1.7 Four Fundamental Vector Spaces of the Matrix

Columns of the matrix can be viewed as the set of column vectors. Similarly Rows
of the matrix can be viewed as the set of Row vectors.
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1.7.1 Column Space

Column space of the matrix A of size m X n is the vector space over the field ‘R’
which is the subspace of the vector space R™. Any vector in the column space of the
matrix A can be obtained as the linear combinations of the columns of the matrix.
Columns of the matrix A forms the spanning set of the Column space.

1.7.2 Null Space

Null space of the matrix A of size m x n, represented as N (A), is the vector space
over the field ‘R’ which is the subspace of the vector space R” such thatthe Av = 0
forallv € N(A).

1.7.3 Row Space

Row space of the matrix A of size m x n, represented as C(A7), is the vector space
over the field ‘R’ which is the subspace of the vector space R”, which is basically
the Column space of the matrix A7 . Therefore any vector in the Row space of the
matrix A can be obtained as linear combinations of the row vectors. Rows of the
matrix A forms the spanning set of the Row space.

1.7.4 Left Null Space

Left Null space of the matrix A of size m x n, represented as N(AT), is the vector
space over the field ‘R’ which is the subspace of the vector space R™ such that the
AT v =0 forallv e N(AT).

1.8 Basis of the Four Fundamental Vector Spaces of the Matrix

Example 1.12.
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1.8.1 Column Space

To compute the column space, we need to find the maximum number of independent
columns of the matrix A which is the minimum spanning set (i.e.) Basis of the
column space.
Trick to find out maximum number of Independent columns of the matrix A.
Applying the following Row Operation

R2- > R2-5*R1
R3- > R3-6*"R1

we get

12 3 4
=10 -5 -8 -8
0 -5 -8 =8

R3- > R3-R2

12 3 4
==|0 -5 -8 -8
00 0 0

12 3 4
=10 -5 -8 =8
00 0 O

The above is the Row Reduced Echelon Form (RREF). The Bold numbers in the
above matrix are called pivot elements and the corresponding columns are called
pivot columns.

12 3 4
0 -5 -8 =8
00 0 O

The bold numbers mentioned in the above matrix can also be treated as the pivot
numbers and the corresponding columns are called pivot columns.

12 3 4
A=|(0 -5 -8 -8
00 0 O

Similarly the bold numbers mentioned in the above matrix can be treated as the
pivot numbers and the corresponding columns are called pivot columns.

Pivot columns are independent to each other and it is the maximum number
of independent columns of the RREF matrix. It can be shown that the corre-
sponding columns of the original matrix A are independent vectors.



16 1 Matrices

Check for independent vectors
The Linear combinations of the independent vectors is equal to zero vector only
when the scaling factors are identically zeros.

(i.e.)
1 2 0
a1 |5+ |5 =0 =2a1=02,=0
6 7 0

Rewriting the above equations in the standard Linear equation form is as shown
below.

o1 +20p =0--------- o (1)
5014+ 50 =0------------mmo oo 2)
600 +Tag =0----------mm e - 3)

(2)-5*(1) and (3)-6*(1) gives the following equations

o+ 2000 =0------- - (1)
S50y =0----m e (2)
S50y =0----- e a oo (3)

>0 =0,=0

The operation performed above is equivalent to the Row operation of the origi-
nal matrix A. Thus columns of the original matrix corresponding to the pivot
columns are independent to each other.

Hence the corresponding columns in the original matrix form the column space
of the matrix A. Thus column space of the matrix A is represented as set of vectors

1 2
o1 | 5| +azx|5], whereay, a1 € R
6 7

Also note that the dimension of the column space is 2.
Null space of the matrix A is obtained as follows.

123 4
A=1]557 12
6 7 10 16

Row and the column operation of the matrix can be viewed as the matrix multipli-
cation of the particular matrix with the matrix itself as described below.
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1 00 1 23 4 1 23 4
=1010 557 12 |=| 557 12
0 01 6 7 10 16 6 7 10 16

Applying the Row operation on the Identity matrix in the LHS and the matrix in the
RHS, we get

R2- > R2-5*R1
R3- > R3-6*R1
00 1 23 4 12 3 4
—5 1 0] 557 12 |=[0 -5 -8 -8
-6 0 1 6 7 10 16 0 -5 -8 =8
100771 00 1 23 4 12 3 4
=1010 -5 10 557 12 |=10 -5 -8 -8
001 ]J[L—-6 01 6 7 10 16 0 -5 -8 =8

Again applying the Row operation on the Identity matrix in the LHS and the matrix
in the RHS, we get

10 O 1 00 1 23 4 12 3 4
01 O -5 10 557 12 |=[0 -5 -8 -8
0 -1 1 -6 0 1 6 7 10 16 00 0 O
x; 123 4
Thus an arbitrary vector i multiplied with the matrix | 5 5 7 12
x3
6 7 10 16
x4
x1

. x2 . . .
gives the zero vector, then the same vector 3 when multiplied with the matrix
X

x4
1 2 3 4

0 —5 —8 —8 | gives the zero vector. In other words the Null space of the

00 0 O
1 23 4
matrix | 5 5 7 12 | is same as that of the Null space of the matrix after per-
6 7 10 16

forming Row operation. (i.e.)

12 3 4
Null space of the matrix | 0 —5 —8 -8

00 0 O
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12 3 4
Null space of the matrix | 0 —5 —8 —8 | is determined as follows.
00 0 O
12 3 4 x; 0
0 -5 -8 —8 || J|=]0
00 0 O 0
x4

Bold numbers of the above matrix is treated as pivot columns. Remaining columns
are called free variable columns. The corresponding variables x1 and x2 are called
pivot variables and the variables x3 and x4 are called free variables.

Representing the pivot variables in terms of free variables, we get

8 8
xl =-2 % |:—§*x3—§*x4:|—3 * x3 —4 x x4

16 16
xlzg*x3+?*x4—3*x3—4*x4
1

4
xl = =-%xx3—=x%xx4
5 5

8 8

X2 =—=%x3—-xx4
5

x3 = x3

x4 = x4

Thus the set of vectors as shown below form the Null space of the matrix A.

1 4
S Y B
ii =x3 _lg + x4 _05 ,x3, x4 eR
x4 0 1

As shown above, the number of independent columns to represent the Null space is
two. Hence dimension of the Null space of the matrix A is given as two.

Row space and the Left Null space of the matrix A is obtained as the Column
space and the Null space of the matrix A7 as shown below.

123 4 ;Z 3

A=1[55712| AT =
671016 3710
41216
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Applying Row operation,

R2- > R2-2* R1
R3- > R3-3* R1
R4- > R4-4* R1

We get,

5 6
-5 =5
-8 -8
-8 -8

SO O =

Further applying the Row operation

R3- > R3-(5/8)" R2
R4- > R4-(5/8)* R2

We get,
15 6
0 -5 -5
00 O
00 O

The Bold numbers in the above matrix are called pivots and the corresponding
columns are called pivot columns. The columns of the original matrix corresponding
to the pivot columns are the maximum number of independent columns of the matrix
A. Hence they are the basis of the column space of the matrix A7 or the Row space
of the matrix A.

Thus the Row space of the matrix A is represented as the set as given below.

5
5
+ o 7 |02 eR

1
2
3
4 12
The dimension of the Row space of the matrix A is 2.

Similarly the Left Null space of the matrix A is obtained as the Null space of the
matrix A7

The matrix A7 after subjected to Row operation is as shown below.

15 6
0 -5 =5
00 O
00 O
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Bold letters mentioned above in the matrix are the pivot elements and the
corresponding columns are the pivot columns. Other column is called free vari-
able column. Null space of the matrix A7 is same as that of the Null space of the
matrix AT after subjected to Row operation. Thus the vector space of the form

15 6 0
x1 0 -5 _5 x1 0
x2 | is required such that 00 0 x2| = 0 to obtain the Null
x3 00 0 x3 0

space of the matrix A7 The variables x1 and x2 are called pivot variables and the
variable x3 is called free variable.

Representing the pivot variables in terms of free variables, we get the following.

XI+5%x2 + 6%xx3=0------cmoomomo- (1)
—S5%x2 — 5%xx3=0-------—------------ (2)
Equation (2) = x2 = —x3
Equation (1) = x1 = =5 % x2 — 6 % x3
= xl=5%xx3-6%x3=—x3

Thus the Basis of the Left Null space of the matrix A, which is the Basis of the Null
space of the matrix AT is given below.

—x3
—x3|Vx3eR
x3

-1
=|-1|laVa eR

Note that the dimension of the Left Null space of the matrix A is one.

1.9 Observations on Results of the Example 1.12

In the Example 1.12, Column space, Null space, Left Column space (Row space)

1 23 4
and the Left Null space of the matrix A = | 5 5 7 12 | is obtained as the
6 7 10 16

following
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1.9.1 Column Space

1 2
o1 |5 +ax|5]|,wherea;,aq € R
6 7

The dimension of the column space is two. Also note that the Column space of the
matrix A sized 3 x 4 is the subspace of the vector space R3.

1.9.2 Null Space

1 4
x1 5 —3
8 8
X2 |5 —3
=x3 + x4 Vx3,x4 e R
x3 1 0
x4 0 1

The dimension of the Null space is two. Also note that the Null pace of the matrix
A sized 3 x 4 is subspace of the vector space R*.

1.9.3 Left Column Space (Row Space)

1 5
a1 § + o g Va,a € R
4 12

The dimension of the Row space is two. Also note that the Row space of the matrix
A sized 3 x 4 is subspace of the vector space R*.

1.9.4 Left Null Space

-1
—1l|laVaeR
1

The dimension of the Left Null space is one. Also note that the Left Null space of
the matrix A sized 3 x 4 is subspace of the vector space R3.
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1.9.5 Observation

1. The column space and the Left Null space of the matrix A are the subspaces of
the R3, where 3 is the number of rows of the matrix A.

2. The Null space and the Left column space of the matrix A are the subspaces of
the R*, where 4 is the number of columns of the matrix A.

3. Dimension of the column space of the matrix A + Dimension of the Null space
of the matrix A = 2 4+ 2 = 4 = Number of Columns of the matrix A.

4. Dimension of the Left Null space of the matrix A+ Dimension of the Left Col-
umn space (Row space) of the matrix A = 1 4+ 2 = 4 = Number of Rows of the
matrix A.

5. The Column space of the matrix A and the Left Null space of the matrix A are
orthogonal to each other (i.e.) any vector a € C(A) and b € N(AT) satisfies the
conditiona’b = hTa = 0.

Proof. Let y € N(AT) = ATy = 0. Taking transpose on both sides, we get
yTA =0 = yTAx = 0 (Multiplying arbitrary vector on both sides).
Note that Ax € C(A). Hence proved.

6. The Row of the matrix A and the Null space of the matrix A are orthogonal to
each other.

Proof. Let y € N(A) = Ay = 0. Taking transpose on both sides, we get
yTAT =0 = yT AT x = 0 (Multiplying arbitrary vector x on both sides). Note
that AT x € C(AT). Hence proved.

In general for the matrix A of size m x n dim(C(A)) 4+ dim (N(A)) = n. This
is known as Rank-Nullity Theorem.

Dimension of the Column space of the matrix A is the maximum number of inde-
pendent columns (pivot columns) of the matrix A. Let it be ‘r’. From the procedure
of the determining the Null space of the matrix A (Representing all the variables
in terms of free variables), it can be shown that dimension of the Null space of the
matrix A is equal to the number of free variable columns of the matrix A. This is
equal to n-r, where ‘n’ is the total number of columns of the matrix A and the ‘r’ is
the number of pivot columns. Thus dim(C(A)) 4+ dim(R(A)) = n.

1.10 Vector Representation with Different Basis

Example 1.13. [i:| {1 ol € IR? is the vector represented with respect to the basis
ol

[(1)] m (i.c.) The vector m H H _ g [0] H H e m H H

0|1
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. 5 5. . .
Similarly 6 {1} { 1 } € R~ is the vector represented with respect to the basis

1]|—-1

1 —1 1]|—1

0t DS

Also the vector |} {1 1 is represented as the linear combinations of
&

v (]

Similarly the vector |: 11] [1} [ 1 } is represented as the linear combinations of

BHQ@WMMWQHF}ﬂ{me+¢“%HW

1]|—1

el e[}

Thus the vector [21| [1 1 is represented as the following
K

# (o] e[ e (o -

=(5*1+6*1)*|:(1)1|—}—(5*1—}—6*1)*[?]

=104 Al

0
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Similary [ﬂ[lm SR 7

01

1.11 Linear Transformation of the Vector

T: V->U is the Linear transformation such that any vector in the vector space ‘V’
is mapped to another vector that lies in the vector space ‘U’. There exists the trans-
formation matrix to perform this operation. The vector space V can also be equal to
the vector space U.

Example 1.14. T: R?->RR? such that any vector x € R? is mapped to another vector
-1 0 . . .

0 11| x. This is the Linear operation of the
image reflection about the origin. Note that the vectors x and y are represented with
respect to the standard basis. Also note that the transformation matrix is with respect
to the standard basis.

R? Vector points plotted in the 2D plane before and after transformation are given
below (Fig. 1.2).

y € R? using the relation y = |:

vector [x y]

O

2D Map before Transformation

vector [-Xx —y]

O

2D Map after Transformation

Fig. 1.2 Illustration of the linear transformation of the vector
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1.11.1 Trick to Compute the Transformation Matrix

Identify and note down the transformed vectors for the standard basis |:(1):| and |:(1):|

For the example mentioned above |:_01] and |: 01i| are the transformed vectors

corresponding to the standard basis |:(1)] and |:(1)] respectively. The transformation

matrix corresponding to the above transformation is obtained by representing the
transformed vectors column wise. For the above mentioned example, the transfor-
mation matrix is given as

-10

0

This is same as the one given in the Example 1.14.

1.12 Transformation Matrix with Different Basis

Consider the transformation matrix with respect to the standard basis as de-

scribed below
-1 0
0 —1

E]H[ 1 210! N

1|—1 0][1

spect to the basis B] |:_11j| and |:(1)j| , |:(1)] respectively.

The vector in the standard basis (i.e.) { B _11j| |:2j|§ {1 0 is transformed into
o]

. L . . |[-10
another vector in the standard basis using the transformation matrix |: 0 i| as

—1
-1 071 17]]5]
000y
o
The above vector in standard basis is equivalent to the vector given below with

respect to the basis i |: ! 1]




[N ey

5 .
Note that the vector [6} and the transformed vector are represented with respect to

1 1
the basi .
e basis |:1i| |:_1]

-1
Th tri
€ matrix |:O 1

-1
11 -1 0|11
. h . s th i
basis and the matrix {[1 _1i| |: 0 _1i| |:1 _1]§ {1} { ! } is the correspond
1l

] is the transformation matrix with respect to the standard

. . . .1 1 .
ing transformation matrix with respect to the basis |:1i| , |: ] These matrices are

called similar matrices. In general similar matrix of the matrix A is obtained using
invertible matrix M as M ~1AM.

1.13 Orthogonality

1.13.1 Basic Definitions and Results

Inner product: Inner product of the vectors x,y € R" is defined as xT y =
e
x2
[y1y2 yn] =xl %yl +x2%xy2+x3%xy3...+xn*xyn

Orthogonal vectors: Two vectors x and y are said to be orthogonal if x r y =0.

Orthogonal basis: Basis B is said to be orthogonal if x y=0Vx,yeB, x #* y

o

Orthonormal basis: Basis B is said to be orthonormal basis if x”y = 0 an
xTx=1Vx.yeBx#y

Example. Standard basis for the vector space R"
A set of mutually orthogonal non-zero vectors are linearly independent. But set
of independent vectors need not be orthogonal vectors.



1.14 System of Linear Equation 27

Orthogonality of subspaces: Consider two subspaces S € R” and T € R”. The

two subspace S and T are said to be orthogonal if xTy = 0V x,€ S and y €

T.x#y B B

Example. 1. Column space of the arbitrary matrix A and the Left Null space of the
matrix A are the orthogonal spaces.

2. Row space of the arbitrary matrix A and the Null space of the matrix A are
orthogonal spaces.

1.13.2 Orthogonal Complement

The Vector space ‘V’ that consists of the all the vectors that are orthogonal to the
vector space ‘S’ is called the orthogonal complement of the vector space ‘S’. It is
denoted as V = S+,

Example 1.15. 1. Column space of the arbitrary matrix A and the Left Null space
of the matrix A are the orthogonal complement.
Row space of the arbitrary matrix A and the Null space of the matrix A are the
orthogonal complement.

1.14 System of Linear Equation

System of Linear Equation can be viewed as the problem of estimating the value of
¢i’'S, (i.e)er,c2,¢3,...cm € Rsuchthate™ X, +¢2*X, +...cn*X,, = b.

X1i by
X2; by
where X; = X3i and b = b3 and x;;,b; € R

Xni by

The Expanded representation of the above mentioned equation is represented as
follows.

c1x11 + c2x12 + c3x13 + - CmX1m = bl
c1X21 + C2X22 + €3X23 + -+ CmXom = b2

c1X31 + C2X32 + €3X33 + - CmX3m = b3
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C1Xn1 + C2Xpn2 + C3Xp3 + -+ CmXnm = by

Thus the above equation can also be represented as

X11 X12 X13 cc Xim c1 by

X21 X22 X23 *r Xom c2 by

X31 X32 X33 ‘*r X3m c3 | =1 b3

Xnl Xn2 Xn3 - Xnm Cm bm
=[Xle =0

1.15 Solutions for the System of Linear Equation [A]x = b

Note:

Let the size of the matrix ‘A’ be m x n. x € R"”, b € R™. Basis of the vector
space R” can be obtained as the concatenation of the basis vectors in the Row space
of the matrix A with the Basis of the Null space of the matrix ‘A’.

Let {b1,bs,...b,} be the basis of the Row space of the matrix A. Also
{br+1,br42,...b,} be the basis of the Null space of the matrix A. Then the
basis of the vector space R” is given a {by, b2, ...b,}.

Consider any arbitrary vector ‘v’ in the vector space R", which can be repre-
sented as the linear combinations of the above mentioned basis vectors as given
below.

v =oa1by + arby + azbs + -0y by + drp1br41 + trg2brgn + -+ by
aiby + aoby + a3bs + -+ arby) + (416741 + Qrg2bryo + -+ anby)
=Vvr+vn

Thus any vector ‘v’ in the vector space R” can be represented as the direct summa-
tion of the vector from the Row space ‘vr’ and the vector from the Null space ‘vn’.

Similarly any vector in the vector space R™ can be represented as the summation
of the vector from the column space and the vector from the Left Null space.

Case 1: If the vector b lies in the column space of the matrix A

The solution that exists in the vector space R” can be represented as the direct
sum of the vector from the row space and the vector from the null space. The vector
which is obtained from the row space is unique. But any vector from the null space
can be chosen to add with the one chosen from the row space to get the solution.
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Thus in general, there exists infinite number of solutions for the system of Linear
equation. But, if the Null space of the matrix ‘A’ is 0, then the unique solution occurs
for the equation of Linear Equation [A] x = b. In this case the unique solution is
the vector obtained from the row space

Example 1.16. Consider the Linear Equation represented in the matrix form as
shown below

123 4 A 1
557 1217 =]2
6 7 10 16 || 3
[ X4
123 4 Xl 1
Notethat A= | 5 5 7 12 | Thex = |*>|andb = |2
6 7 10 16 X3 3
- | x4
The above equation can be viewed as
B 2 3 4 1
Slxt+ |52+ 7 [x3+]12|x4=|2
6 7 10 16 3

From the above, we can interpret that the solution for the above linear equation
occurs only if the vector b lies in the column space of the matrix A.

1.15.1 Trick to Obtain the Solution

T1 23 4 x; 1
557 12 x3=2
6 7 10 16 ||~ 3
L x4
_ - [ x1
100 123 4 ) 10071
=1010 557 12 x3=010 2
001_671016_i4 001]/3

Applying the Row operation on the identity matrix on both sides will not affect the
equality
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R2- > R2-5 % R1
R3- > R3-6 * R1

1 00717123 4 x; T1 00
510|557 12 §3=—51 2
-6 0 1 6 7 10 16 4 | —6 0 1
_ x1]
1 00 12 3 4 5 1 0 1
X
=1010 -5 -8 -8 ; = -3
X
00 1 -5 -8 -8 001][|=3
- x4_
Applying again the Row operation
R3- > R3-R2
10 0 12 3 4 x; 10 0 1
=l01 o]0 -5 -8 —8 §3=010 -3
0 —1 1 0 -5 -8 —8 0 -1 1 ][=3
x4
We get
12 3 4 ;‘; 1
=10 -5 8 8[| |=|=3
00 0 0 0
x4

The modified equation mentioned above can be used to compute the values for the
unknown variables x1, x2, x3 and x4.
1

To get the solution, the vector | —3 | should lie in the column space of the matrix
0
12 3 4
0 —5 —8 —8 |[. The Bold letters mentioned in the matrix are called pivot elements
00 0 O
and the corresponding columns are called pivot columns and the remaining columns
are called free variable columns. Hence the column space of the above matrix is
obtained as
1 2
X1 |0 +x2| -5
0 0
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Thus for some values x; and x»

1 2 1
X1 |0 +x2| -5 =|-3
0 0 0

3 —1

= X2 = gxl = ?

Thus the particular solution of the equation

x1 x1 -1/5
1 23 4 1
x2 o x2 3/5
557 12 =2 1s =
x3 x3 0
6 7 10 16 3
x4 x4 0
1
n2 |
Consider the vector n3 in the null space of the matrix A = | 5
n
6
n4
(i.e.)
nl
1 23 4 0
n2
557 12 =10
n3
6 7 10 16 0
n4

Combining the two equation, we get

123 4 x;i”; 140
557 12 |1 = |20
6 7 10 16 3+0
x4 +nd *
RN NS I
=557 12 §3+Z3 =2
6 7 10 16 3
x4 +n4
x1 + nl
= X2+ n2 is the solution of the Linear equation.
x3+4n3

x4 + n4

3 4
7 12
10 16

31
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x1 nl
x2|. . . n2|. . .
where 3 is the particular solution and 3 is the particular vector in the Null
x4 n4
space of the matrix A
So the complete solution of Linear Equation of the form Ax = b consists of
particular solution + any vector in the null space of the matrix A.
Computation of Null space of the matrix A
The matrix A in RREF is given below

12 3 4
0 -5 -8 -8
00 0 O

Representing pivot variables in terms of free variables, we get

8 8
X2 = —§X3 + 3 X4

X1 = —2)62—3)63—4)64
(8 8
= x1 =2 ——=x3+ | —=)xa) —3x3 —4x4
5 5
- B e+ 3xs —4
X1 = —X3+ —x4 —3x3 —4x
1 5 3 5 4 3 4
1 —4
= X1 = §X3+?X4

The Null space of the matrix A is given as

1 4 1 4
5X3 —3x4 5 ~5
_8.3_8 _s _3
sX3—5x4 = x3 51+ x4 5
x3 1 0

x4 0 1

Thus the Complete solution of the Linear Equation is given as

1 1 4
-3 5 -5
3 _8 _8
S| +x3 S|+ x4 5|, where x3,x4 € R
0 1 0
0 0 1

Case 2: If the vector b does not lie in the column space of the matrix A

For any x € R™, Ax always lies in the column space of the matrix A and
hence If the vector b does not lie in the column space of the matrix A, then solution
doesn’t occur.
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In this case the vector x is estimated such that ||Ax — b|| is minimized. It is also
known that the solution occurs in the vector space R (i.e.) x € R™ Any vector
in the vector space R™ can be represented as the direct sum of the vector from the
column space and the vector from the Left Null space of the matrix A. The vector
b, that lies in the column space of the matrix A are to be found such that ||b. — b||
is minimized.

Note:
The vector b = b, + by,.

Multiplying the matrix

ATon both sides, we get

ATll = AT(bc + bin)

= ATh. + AThy,

= ATh. + 0 [Because by, lies in the left Null Space of the matrix A]
= ATh = ATb,

Consider solving the equation Ax = b when b does not lie in the column space of
the matrix A.

The vector x cannot be found, because b does not lie in the column space of A.
Hence the best value for the vector x is estimated as X such that

AT =b,
Multiplying the matrix A” on both sides, we get

ATAz = A"b,
=x=AT4)7 14T b,
>x=A"A)"ATp [ AT b. = AT b]

Note that (AT A)~1 (AT A) is the identity matrix and hence (A7 A)~!1 AT is the left
inverse of the matrix A.

Also note that the best estimate X = (AT A)~! AT b exists only when AT 4 is
invertible. Also note that AT A4 is invertible if and only if the columns of A are
independent (i.e.) A is invertible. This is true because Null space of A is exactly
equal to the Null space of AT A. So if N(A) is 0, then N(AT A) is 0 and hence if A
is invertible, AT A is invertible and vice versa.

It can also be shown that the above estimated value for x (i.e.) X is the estimate
of the Multi variable x such that || Ax — b|| is minimized.

Example 1.17. Solving the Linear Equation of the form Ax = b
14 5

Where A= |25|b=1|7
36 10
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The best estimate for the variable x lies in the vector space R?.
It is known that

dim(N(A)) + dim(R(A)) = 2
dim(C(A)) + dim(N(AT)) =3
dim(N(A)) + dim(C(A)) = 2

Note that the dimension of the column space of the matrix A is 2. From the above
mentioned fact, dimension of the Null space of the matrix A is 0, the dimension of
the row space of the matrix A is 2 and the dimension of the Left Null space of the
matrix A is 1.

The vector b does not lie in the column space of A. The best estimate for the
variable x is found as X such that AX = b, and ||b. — b|| is minimized. The vector
b lies in the column space of the matrix A, which can be represented as

147 —
be=|25 [{;] — A%
36) %
Consider the vectors b, and b as shown below (Fig. 1.3).

From the figure, it can be realized that the distance between the vector b, and b
occur only when the vector b, is orthogonal to the vector (b — b.). As b, lies in
the column space of A, the vector (b — b, ) orthogonal to the individual basis of the
column space of the matrix A,

T

1 14]
=[2| |b-]|25 [%2} = Q- (1)
3 36| L%

Fig. 1.3 Pictorial
representation of the vectors b
b, and b 0 c
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" 14]
5| |a—|25 [%2} =0 e 2
6 36 ¢

Combining both the equations we get

1 4 1 47—~

25 bh— 25}[?1] =0

36 3 6 | X2

r1 47" 1477171 47~
=125 Q=|:2 5} {2 SMF]

3 6 | 36 3 6 | X2

"1 471 47—~ 1477
=25 25}[§l]= 251 b

36 36 P |36

- r1 477 47\ 11 477
:%2= 25 25 25| b

L2 136] [ 36]) |3 6]
- F1 47711 47\ 47T
=15, = 25 25 25 7| =Rl=UATA) 14T s
X2 1 36] [ 36]) [36] |10

which is same as the one used in the previous section.

~ _ [17222
)= [0.7778]

] = (A"4) 4" b
Multiplying both sides by A
AlR] = AT4)1ATh
A[X] is the vector b, that lies in the column space of the matrix A.
= AATA)AT b = b,
A(AT A)~! AT is called as the projection matrix, that projects the vector in

the vector space R3 into the column space of the matrix A such that ||b. — b|| is
minimized.
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In this example Projection matrix is

0.8333 0.3333 —0.1667
0.3333  0.3333 0.3333
—0.1667 0.3333 0.8333

(AT A)71(AT A) = Identity matrix. Hence it is also clear that (47 4)~! AT is
the left inverse of the matrix A, which is usually represented as A™.
In this example Left inverse matrix of the matrix A is given as

—0.9444 —0.1111 0.7222

0.4444  0.1111 —0.2222

1 4
—0.9444 —0.1111 0.7222 ) 5| = 10
0.4444 0.1111 —0.2222 36 o1

Left inverse of the matrix exists if (A7 A)~! exists. Similarly if (AAT) (AAT)~! =
Identity matrix, A7 (AAT)~! is the right inverse of the matrix A. Right inverse of
the matrix exists only when (AAT )~ exists.

As already mentioned, if the matrix A consists of all columns independent,
(AT A)~! exists and hence Left inverse of the matrix exists. Similarly if all the
rows of the matrix A are independent (i.e.) all the columns of the matrix A7 is
independent, Right inverse of the matrix exists.

Thus solving the equation Ax = b when b is not in the column space of the
matrix A (the matrix with all the columns are independent to each other), can be
obtained by multiplying the left inverse matrix of the matrix A represented as A™
with the vector b

[Z] = (A"A)7'A" b= AT
Note: Solving the equation Ax = b, when b is not in the column space of the matrix
A and (AT A)~! doesn’t exist can be obtained using Singular Value Decomposition
(SVD) which is referred in the Section 4.25.

1.16 Gram Schmidt Orthonormalization Procedure
for Obtaining Orthonormal Basis

1. Given the set of independent vectors {v1, v2,v3, ... vn} which forms the basis of
the vector space V, an alternative orthonormal basis {al, a2, ... an} for the vector
space ‘V’ can be obtained using Gram-Schmidt Orthonormalization procedure
as described below (Fig. 1.4).

Steps

_ vl
1. al = I
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Fig. 1.4 Illustration V2
of Gram-Schmidt
orthogonalization
v2-p*ai
0 p*at

at’

Find out the vector a2 corresponding to the vector v1 that is orthogonal to the
vector al

2. The vector that is orthogonal to the vector al is v2— p xal as shown in the figure,
where p * al is the perpendicular projection of the vector v2 on the vector al.
The projection point p is computed using the following condition.

(2 —pal)Tal =
=02)Tal = (pal)Tal

2Tal
—p="2 Tl alTal = 1] = alT2
alTal
Thus the orthogonal vector q2 to the vector al is obtained as q2 = v2 —

(a1T v2) x al and the corresponding orthonormal vector is given as a2 = %
3. Now we are in need of the vector which is orthogonal to both al and a2 corre-
sponding to the vector v3

The perpendicular projection vector of the vector v3 on the column space of
the matrix consists of al and a2 as their columns is obtained as pl xal 4+ p2*a2
(as shown in Fig. 1.5). The vector v3 — pl * al + p2 * a2 is perpendicular
to both the vectors al and a2. The projection points pl, p2 are obtained as the
perpendicular projection of the vector v3 on the vector al and a2 respectively
which are computed as

v3Tal

pl = ATal = v3Tal[ alTal = 1] = al"V3
3Ta2

p2 = A v3Ta2[ a2Ta2 = 11 = a27v3

a2Ta2
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Fig. 1.5 Illustration of V3
Gram-Schmidt

orthogonalization

v3-p1ral-p2-a2

o

p1*al+p2*a2

Thus the vector perpendicular to both the orthonormal vectors al and a2 is given
asg3=v3—alT v3xal —a2T v3%a2-----mcmo o 3)
and the corresponding orthonormal vector which is perpendicular to both al and
a2 is given as
3= 3

llg3ll
This can also be computed using the Projection matrix as follows.
The perpendicular projection vector g3’ of the vector of the vector v3 on the
column space of the matrix consists of al and a2 as their columns is obtained
using projection matrix as follows
Let A = [al a2] (Note that al and a2 are the column vectors).

Projection vector g3’ = A(AT A)71 4T ¢3

- ([al a2] ([Z;] [al a2])_1 [Z;D 43
- ([al a2] (1)! [Z;D 43

— ([al a2] [ZIZ;D 43

= (alal” + a2 a2)q3

Therefore perpendicular vector ¢3 = v3 — g3’ = v3 — (alal” 4+ a2 a2)q3 that
is same as Eq. 3 as mentioned above.
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4. Similarly the vector perpendicular to both the orthonormal vectors al and
a2, a3, a4,...an — 1 corresponding to the independent vector vn is given as

qn =vn —alTvn xal —a2Tvn x a2 —a3Tvn * a3

—ad4T vn x a4 — -~ ay,_1Tvn *a,—; and the corresponding orthonormal
vector is
qn
n =
lignll

Thus the set of orthonormal basis {al, a2, ...an}, of the vector space ‘V’ cor-
responding to the basis vectors {v1,v2, ..., vn} is obtained using Gram-Schmidt
orthogonalization procedure.

10
10
11
12

Example 1.18. Consider the matrix A = whose column vectors are

AW N =
0 N DN

independent to each other.

Using Gram-Schmidt, the corresponding orthonormal vectors are obtained as
follows

1 5 10
Letvl = i , V2 = g and v3 = 1(1)
4 8 12
0.1826
vl 103651
Tvl]] | 0.5477
0.7303
2.6667
1.3333
2=v2—(alTV2) xal =
q2=v2- () xa 0.0000
—1.3333
0.1865
492 | 0.4082
“ g2 ~ | 0.0000
—0.4082
0.3000
g3 =v3—alTv3xal —a2Tv3xa2 = :g:‘l‘ggg

0.2000
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0.5477

,_ 43 _|-0.7303
lg3] ~ | —0.1826
0.3651

Thus the set of orthonormal vectors are

0.1826 0.8165  0.5477
0.3651 0.4082 —0.7303
0.5477 0.0000 —0.1826
0.7303 —0.4082 0.3651

1.17 QR Factorization

The matrix with independent column vectors can be represented as the product of the
matrix with orthonormal column vectors and the upper triangular matrix. Consider
the matrix A as shown below.

A = [v1v2 ... vn], where vl v2 ... vn are the independent vectors.

From Gram Schmidt orthogonalization procedure discussed in the previous
section,

| = vl
V1]l
= vl =al|vl|

Multiplying @17 on both sides, we get

= alTvl = alTal|v1|
= |v1|| = alTvl

From the above, we get vl = al(al” v1)
Similarly

2
2 = 9=
lg2ll
= llg2]la2 = ¢2
Multiplying @27 on both sides, we get

= a2T q2 = a2 a2 2|
= llq2]l = a2" q2
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Also
g2 = v2 — (a1Tv2) % al (see previous section)

Multiplying @27 on both sides, we get

a2Tq2 = a2Tv2 — a2 % (a17v2) x al

= a2Tq2 =a2T2
Also we know

lq2] = a2"q2
= a2Tv2 = ||g2||

Rewriting the equation for v2 we get,

v2 = q2 + (a1Tv2) * al
=12 = ||g2)|la2 + (a1Tv2) % al
=12 = (a2Tv2) x a2 + (a17v2) x al

Similarly it can be shown that
=13 = a3 % (a3Tv3) + a2 * (a2Tv3) + al = (a1Tv3)
Similarly it can be shown that

= vn = an x (@n” vn) + an_1 * (@n—1" V1) + dn—2 * (an—2" vn)

tan—3 * (an—3"vn) + dn—y * (an—s” vn) +---ay * (a, " vn)

Representing the above list of equations for v1,v2,v3,...vn in matrix form

A=[vl v2 v3 ... vn]

[(@1Tv1) (alTv2) (a1Tv3) - - - (alTvn)]

0 @2Tv2) (@2™v3) - - - (a2Tvn)

0 0 @3Tv3) - - - (a3Twn)

_ 0 0 0 - - (a4Tvn)
—[al a2a3...an] 0 0 0 o (@5T)
0 0 0 -+« (a6Tvn)

| 0 0 0 - -+ (anTvn) |

Thus the matrix A is represented as the product of the matrix consists of orthonormal
vectors and the upper triangular matrix as shown above.



42 1 Matrices

Example 1.19. From the Example 1.17, QR factorization of the matrix A is given
below

10
10
11
4 8 12

[0.1826 0.8165  0.5477
0.3651 0.4082 —0.7303
0.5477 0.0000 —0.1826

1 0.7303 —0.4082 0.3651

w N =
~N O\ W

5.4772 12.7802 20.2657
0 3.2660  7.3485
0 0 10.5477

1.18 Eigen Values and Eigen Vectors

For the given matrix A, if there exists the non zero vector x such that Ax = Ax,
where A is the scaling factor, then the vector x is the Eigen vector corresponding
to the matrix A. Ax is in the column space of the matrix A. As A is the scalar, the
Eigen vector x lies in the column space of the matrix A.

=[A-Ax=0

where I is the Identity matrix

= The Null space of the matrix [A — AI] # 0
= If the matrix A is the square matrix, the matrix [A — A[I] is called as singular
matrix.
= Determinant (A — Al) = 0, which is represented as |4 — AI| = 0 is the
polynomial equation with variable A. The equation thus obtained is called charac-
teristic equation and the solutions to the characteristic equation are called Eigen
values. Let the degree of the characteristic polynomial be ‘n’ and the correspond-
ing Eigen values are A1, A2, A3, ... An (say). Eigen values thus obtained need not
be distinct.

For every distinct Eigen values, there exist one or more Eigen vectors that are
obtained as follows. The Eigen vectors corresponding to the Eigen value A; are
obtained as the basis of the Null space of the matrix [4 — A [].

1 00
Example 1.20. Consider the matrix A= [0 2 3

045
The Characteristic polynomial of the matrix A is given as

234812 -50-2=0
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The Eigen values of the matrix A are given as

A =1
74+ /57
Aoy = +T = 7.2749
757
Ay = = —0.2749

The Eigen vectors corresponding to the distinct Eigen values are obtained as fol-
lows. Eigen vector corresponding to the Eigen value A; = 1 is the null space of the
matrix

1 00 1 00 000
[A—MI]=A=|0 2 3|—-1|0 1 0|=]013
045 001 0 4 4
000
The Null space of the matrix | 0 1 3 | is obtained as follows.
0 4 4
1
0|x,x,eR
0

Similarly the Null space of the matrix [A — A, /] is obtained as

0
0.4944 [ x,x e R
0.8693

and the Null space of the matrix [A — A31] is obtained as

0
—0.7968 | x,x e R
L 0.6042
1] 0 0
Thus the Eigen vectors are [ 0 |, | 0.4944 |, | —0.7968
0] L[0.8693 0.6042
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1.19 Geometric Multiplicity (Versus) Algebraic Multiplicity

Let the distinct Eigen values of the arbitrary matrix ‘A’ are A1, A2, A3,...Ag such
that A; is repeated n; times, A, is repeated n, times and similarly Ay is repeated ng
times. The sequence of numbers n11,7n,, 13, ... ng are called Algebraic multiplicity
of the corresponding Eigen values A1, A3, 43,... 4. The dimension of the Null
space of the following matrices [A — A1 I],[A — A21],[A — A3I],...[A — Ar 1] are
my,mp, ms,...mg respectively. The sequence of numbers m, m,, ms, ..., my are
called Geometric multiplicity corresponding to the Eigen values A1, A5, 13, ... Ag.

For any Eigen value ‘Ag’, my < ny.If my < ng, the concern matrix ‘A’ is called
deficient matrix.

Note:
1. Eigen vectors corresponding to distinct Eigen values are independent.

Proof. Let A1, A,, A3 forms the Eigen values of the matrix A and the correspond-
ing Eigen vectors are e, e5, e3 respectively.

Let suppose c1e1 +c2e2 +c3e3=0———— — — — — — — — (a).
Multiply the matrix A on both sides, we get

c1Aer + cpAey + c3Ae30.
= c14deq + caAes + c3Aez = 0.

= ciAi1e1 +c2Azer +c3h3e3 =0———— — — — — — — ().
(b) — A1(a)

we get

ci(A1—Asz)er + c2(A2 = A3)e, =0 ————————— — (c)

Multiplying the matrix A on both sides, we get

ci(Ay —Az)Aer +c2(A2 —A3)Ae; =0
=c1(A1 — A3)A1er + c2(Az — A3)Azen

(d) — Az(c)

we get

C](/l] — /13)(/11 — kz =0

= c1 =0/[." A1, A2, Az are distinct Eigen values]

Similarly it can be shown that ¢; = 0 and c3 =0
Hence proved (See Section 1.6)
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In the Example 1.19, the Eigen vectors corresponding to distinct Eigen values
1 0 0
1,7.2749 and —0.2749are | 0 |, | 0.4944 |, | —0.7968 |. They are independent

0 0.8693 0.6042
vectors.

2. Note that Eigen vectors corresponding to the particular Eigen value is the basis
of the null space matrix of the form [A4 — A, ], where A; is the Eigen value of
the matrix A and hence they are independent vectors. Also Eigen vectors corre-
sponding to distinct Eigen values are also independent. Number of Eigen values
with or without repetition is equal to the degree of the characteristic function.
Thus if the matrix A of size m X n is not deficient, Eigen vectors of the matrix A
forms the basis for the R™.

In the Example 1.19, the matrix A of size 3 x 3 is not the deficient matrix because
of the following reasons.

e Geometric multiplicity of the Eigen value 1 = Algebraic multiplicity of the
particular Eigen value 1 = 1

e Geometric multiplicity of the Eigen value 7.2749 = Algebraic multiplicity of
the particular Eigen value 7.2749 = 1

e Geometric multiplicity of the Eigen value —0.2749 = Algebraic multiplicity
of the particular Eigen value —0.2749 = 1

Thus the Eigen vectors mentioned above forms the basis of the vector space R3
3. Let Determinant

([A-AM]=A-AD)A—-22)A—-23)...(A = An)

Substituting the value for A = 0 on both sides, we get

Determinant
([AD =0 —=2A1)O0—212)(0—23)...(0—2Ap) =
= (=1)"A1A243... 1,
It can also be shown that trace of the matrix = a1 + a» + az + ---a,

= Ay + Ay + A3 +--- 4+ A, by comparing the co-efficient of (—1)" !

4. Let one of the similar matrix for the arbitrary matrix A of size n x n be V and is
obtained using the arbitrary invertible matrix M of sizen x nas B = M ~1AM.
It can be shown that the Eigen values of the matrices A and B are equal. Also it
can also be shown that if x is the Eigen vector of the matrix A, then M Ly isthe
Eigen vector of the matrix B.

Proof. Consider the characteristic of the matrix B as |B — AI| = 0|. Substitute
B = M ~!AM in the equation we get |M ~'AM — AI| = 0|

=|M"1AM —AM~'M| = 0|

=|M~YA—-AI)M| = 0|
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=[(A4—Al)| =0

= The Characteristic equation of the matrix A and the Characteristic equation
of the matrix B are the same and hence their Eigen values are equal. If ‘x’
is the Eigen vector of the matrix A corresponding to the Eigen value ‘A’.
Ax = Ax. >MBM 'x = Ax=>B(M~'x) = A(M~'x)

Thus M ~!x is the Eigen vector of the matrix B.

5. Computing Eigen vector for the block diagonal matrix.
Consider the matrix of the form

1230 0 0

4560 0 0

7890 0 0 A0
“=lo00 10 11 12 _[o B]Where

000 13 14 15

000 16 17 18]

123 10 11 12
A=|456|B=|13 14 15

78 9 16 17 18

Eigen vectors of the matrix A (Arranged column wise) are given as

—0.2320 —0.7858 0.4082
—0.5253 —0.0868 —0.8165
—0.8187 0.6123  0.4082

Similarly Eigen vectors of the matrix B (Arranged column wise) are given as

—0.4482 0.7392  0.4082
—0.5689 —0.0333 —0.8165
—0.6896 0.6727  0.4082

The Eigen vectors of the matrix C are obtained as follows. (See Eigen vectors of
A and B))

[—0.2320 —0.7858  0.4082 0 0 0
—0.5253 —0.0868 —0.8165 0 0 0
—0.8187 0.6123  0.4082 0 0 0

0 0 0 —0.4482 —0.7392 0.4082
0 0 0 —0.5689 —0.0333 —0.8165
| 0 0 0 —0.6896 0.6727  0.4082 |
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1.20 Diagonalization of the Matrix

If the matrix A is not the deficient matrix, it can be diagonalizable as described

below.

If the matrix A of size m X n is not the deficient matrix, then there exists
‘n’ Eigen vectors ey, ez, e3,e4, €5, €6, ... €y,, corresponding to ‘n’ Eigen values
A1 Az A3 A4 As...A, with or without repetition, that satisfies the following

conditions.

/461

=Ai1er

A €y = Az (%)

A€3 2/136’3

Aey

=Aie,

The above set of equations is written in the matrix form as shown below.

ai aiz
a1 Az
asy asz
as1 a4z

dp1 dpn2

ar
asi
asi

as

an1

€11 €21
€12 €22
€13 €23
€14 €24

€ln €2n

ais
azs
ass
ass

Aan3

aiz
azn
asz

as

an2

€31
€23
€33
€34

€3n

ais4
az4
ass
aa4

Adn4

ais
az3
ass

ass

an3

€41
€42
€43
€44

€4n

aia
azqa
asq

aaq

Qna

Aln
azn
a3n
d4an

Ann

e11
€12
€13
€14

ent | | M1

€n2
€n3

e

e

S O O

n4

nn 0

Adin
Aazn
Aa3p

d4an

Ann

€21 €31
€22 €23
€23 €33
€24 €34

€2n €3p

0 0
Ay O
0 As
0 0

0 0

€41
€42
€43
€44

€4n

0
0
0
A4

0

€nl
€n2
€n3
€n4

€nn

oS O O O
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€11

€12

€13

€14

€1n

€11
€12
€13
€14

€1n

ar
asi

aszy
Where A = >
aay

Aani

€21
€22
€23

€24

€2n

€21
€22
€23
€24

€2n

aiz

ann

asp

asn

an2

€31
€23
€33

€34

€3n

€31
€23
€33
€34

€3n

ais

ass

ass

as3

an3

Eigen vectors is given as e

The Eigen vector matrix E =

€41 €n1
€42 en2 M
0
€43 €n3 0
e44 ena 0
0
€4n €nn
q9T
€41 €n1
€42 €n2
€43 €n3
€44 €n4
€4n €nn_|
ai4 Aln
a4 Aazn
as4 a3n
a44 Ad4n
an4 dnn
€11 €21
€12 €32
€13 €23
= le14|€2=|€24
€15 €25
| €1n_| L €2n |
€11 €21 €31 €41
€12 €22 €23 €42
€13 €23 €33 €43
€14 €24 €34 €44
€ln €2n €3 €4y

0O 0 O
Ay 0 O
0 A3 O
0 0 A4
0 0 O

€31
€32
€33
€3 = | €34
€35

€n1
€n2
€n3
€n4

€nn

€3n_]

S O O O

ey =

1 Matrices

€nl1
€n2
€n3
€na
€ns

€nn
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Ar 0 0 O 0

0 2 0 O 0

Diagonal matrix D = 8 8 )2)3 ;)4 8
|0 0 0 0 An |

Thus the non-deficient matrix A is represented as the product of the transpose of the
Eigen vector matrix, Diagonal matrix and the Eigen vector matrix (i.e.) A = EDET.

1.21 Schur’s Lemma

For any square matrix A, there exists the Unitary matrix U such that UHAU = T,
where T is the triangular matrix.

Example 1.21. Consider the matrix A as shown below.

12 3
A=1(4 5 7
7 8

—_—

0

Eigen values and the corresponding Eigen vectors are as shown below.
17.1747, —1, —0.1747. The Eigen vector corresponding to the Eigen value
—0.2176
17.17471s E; = | —0.5392 |.
—0.8136
Construct the Unitary matrix U; with the Eigen vector E; as the first column and
other two columns are arbitrarily chosen.

[—0.2176 1 -1
Uy = | —0.5392 1 0.7726
| —0.8136 —0.9302 —0.2445 |
f-02176 1 -1 1"
UTAU, = | —0.5392 1 0.7726 | x
| —0.8136 —0.9302 —0.2445 |
12 37[-02176 1 -1

457 —0.5392 1 0.7726
|7 8 10] [ —0.8136 —0.9302 —0.2445

[17.1753 —6.0233  3.6934
= 0 —2.6023  0.9996
0 0.3201 —0.4418
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—2.6023 0.9996 :|

0.3201 —0.4418
The Eigen values of the matrix B are —2.7414 and —0.3027. The corresponding

Now consider the matrix B = |:

. . |1 —0.9905
Eigen vector —2.7414 is |: 0.1379 ]
1 0 0
Form the matrix U, = | 0 —0.9905 el
0 0.1379 e2

el .
The vector |: 2i| are chosen such that the columns of the matrix
e

—0.9905 el
0.1379 e2

i| are orthogonal to each other.

1 0 0
Thus the matrix U, is chosenas | 0 —0.9905 1
0 0.1379 7.1827

10 0
LU, =01 0
0 0 525912
(17.1753  6.4754  20.5055
UDEUNEAUWU, = | 0 —27417 —4.9272
L0 0  —15.9140

Let UH = (Uy)" (Uy)H, which is also the Unitary Matrix

17.1753  6.4754  20.5055
= U"AU = 0 —2.7417 —4.9272
0 0 —15.9140

By using the procedure described above, any arbitrary matrix A, there exists the
Unitary matrix U such that U7 AU = T, where T is the triangular matrix.

1.22 Hermitian Matrices and Skew Hermitian Matrices

Let A is the conjugate transpose of the matrix A. The matrix is said to be
Hermitian matrix if A¥ = A and the matrix A is said to be Skew Hermitian if
A = —4.

Properties:

1. xH Ax is real.

Proof. Taking the conjugate transpose of the matrix x Ax, we get (x7Ax)# =
xH Ax. Hence proved.



1.22 Hermitian Matrices and Skew Hermitian Matrices 51

2.

Eigen values of the Hermitian matrix are real.

Proof. Vector such that Ax = Ax.
Multiplying x on both sides, we get

xH Ax = AxHx.
We know xH Ax and x¥ x are the real numbers.

= Ax"x = real number

= A is the real number.

. Eigen vectors of the Hermitian matrix A corresponding to distinct Eigen values

are orthogonal.

Proof. Let A be the Hermitian matrix and let A1, A, be the distinct Eigen values
of the matrix A and the corresponding Eigen vectors are e; and e.

Ael = )&1 €1

Aesy = Asen
Consider
MeNfey=(Ae)fe, =eTA ey = e1H dey = e1 dze,
(Note that A = AH)

= (/11 €1)H€2 = €1H)L2€2 = €1H€2()&1 —)Lz) =0

= e1fe, =0 [Because A1 — Ay # 0]

Hence proved.

1 i 3i
Example 1.22. Let A= | —i 2 4 | be the Hermitian matrix (i.e.) A = A#
—-3i 4 5

Eigen values are —1.3560, 0.4123 and 8.9438 (They are real) and the correspond-
ing Column wise Eigen vectors are

0.5410i —0.7601i 0.3599i
0.5728  0.6464  0.5041
—0.6158 —0.0666 0.7851
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Note that Eigen vectors are orthogonal to each other. (i.e.)

0.5410
[—0.5410i 0.5728 —0.6158] | 0.5728 | = —1.11027¢ =0
—0.6158

Similarly it can be shown that all the Eigen vectors are orthogonal to each other.

4. Hermiitian matrix is always diagonalizable using the unitary matrix.
For all arbitrary Hermitian matrixes ‘A’, there exists the Unitary matrix U such
UH AU = D, where D is the Diagonal matrix.

Proof. From Schur’s lemma, for any arbitrary Hermitian matrix ‘A’, there exists
the Unitary matrix U such that U # AU = T. Taking Hermitian transpose on both
sides, we get

v Ay =14
= UHAU =TH [Because A = A7]
=T7=TH

= ‘T’, in this case is the Diagonal matrix ‘D’ with all the elements in the matrix
are filled up with real numbers. Hence proved.

1.23 Unitary Matrices

Columns of the unitary matrices are orthonormal to each other. Let U be the Unitary
matrix, then UPU = | (Identity matrix)

Properties:
L Ux|l = [lx]).
Proof.

Sart(Ux) (Ux)) = Sqri((x)™ ()7 (U)(x)) = Sgre((x) 7 (x)) = |x|

Hence proved.

2. (Un"((Uy) = ()7 ().

If Uy, U, are Unitary matrices, then U, U, is also the Unitary matrix.

4. U is always invertible. In particular the inverse of the unitary matrix U is given
as UH.

5. Magnitude of the Eigen values of the unitary matrix is always one.

et

Proof. The Eigen vector x of the unitary matrix ‘U’ satisfies the condition
Ux = Ax, where A is the Eigen value of the unitary matrix
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Taking norm on both sides, we get

[Ux]| = llx]| (see property 1)
1Ux]| = IAx]| = sqre((2x) ™ (Ax))
= sqrt(x" A 2x) = sqri(H 1)sqre((x x)) = A [l1x]]
= [Alllx]l
= llxll = [Alllx]l
= [Al =1

Hence proved.
6. Eigen vectors corresponding to distinct Eigen values are orthogonal.

Proof. Consider the Unitary matrix U such that Ux; = A;x; and xo = A,x3,
where x1, x, are Eigen vectors corresponding to the distinct Eigen values A
and A,. o

Consider (A]X])H()szl) = /11)&2X1HX1 = (le)H(le) = lexl

= )L_I)szlel = lexl
= (Zkz — l)lexl =0
= x1¥x; = 0 [Because (A; A, — 1) # 0]

Hence proved

Example 1.23.

0.7071  0.7071
0.7071i —0.7071i

1. Note that the columns of the matrix are orthonormal to each other.

10
ie) AP A=
(i.e.) |: 0 11|
2. The Eigen values of the matrix A are 0.9659 + 0.2588i and 0.2588 — 0.9659i.
Note that the magnitude of the Eigen values are 1.
3. The Eigen vectors corresponding to the distinct Eigen values are listed below.

b 0.8881
' 7103251 4+ 0.3251i

_ [-0.3251 4+ 0.3251i
St 0.8881

Note that they are orthonormal to each other.

(1e) E]HE2 = |:(1) (1)j|



54 1 Matrices

Example 1.24. The DFT matrix is the unitary matrix.
Four-point DFT matrix is as shown below.

1 1 1 1

A (l) 1 w w2 w
“\2 1 w2 w* w
1 wd w® w

()
where w = e\ #

Note that the columns of the matrix A are orthonormal to each other.

1000
0100

i e)A % A =

(i.e)d 0010
000 1

1. The Eigen values of the matrix A are 1, —1, i
2. The Eigen vectors corresponding to the above mentioned Eigen values are
given as

0.8660 -0.5 0 —0.0231 — 0.0070i
0.2887 0.5 0.7071 —0.4158 — 0.0035i
0.2887 || 0.5 |’ 0 ’ 0.8085

0.2887 0.5 —0.7071 —0.4158 — 0.0035:

Characteristics of the DFT Matrices

1. The Eigen values of the DFT matrices are one among the following values 1, —1,
i, —i. The magnitude of the Eigen values are always one.

2. Consider the circular convolution of the following two sequences as shown
below.

Let X = and H =

AW N =
0 N DN

The circular convolution performed using matrix method is as shown below.

1 43275 66
21 4 3||6] |68
321 4|7 |66
4 32 1][8 60
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1 432
. . 21 4 3. .. . . . .
The circular matrix C = 301 4 is diagonalized using DFT Unitary matrix
4 3 2 1
U as shown below.
C = UDU™!
1 4 3 2 0.5 0.5 0.5 0.5
N 21 43| 105 05 -05 —0.51
321 4| |05 —05 05 -05
4 3 21 05 —-0.5i —-0.5 0.5
10 0 0 0 05 0.5 0.5 0.5
0 —2+2i 0 0 0.5 —-0.5i -05 0.5
0 0 —-2-2i 0 05 —-05 05 -05
0 0 0 -21 105 05 -0.5 —-0.5i
0.5 0.5 0.5 0.5
05 05 -05 —-0.5i
h =
WhereU' =105 05 05 —05
L05 —-0.5i —0.5 0.5i
10 0 0 0
D — 0 —2+2i 0 . 0
0 0 —2-2i 0
L0 0 0 -2
5
Let B = 6
7
8
Multiplying Matrix B on both sides in the above equation we get,
CB = UDU'B
1 4 3 275 0.5 0.5 0.5 0.5
N 21 4 3 6| 105 051 —05 —0.5i
321 4|7 |05 —05 05 —05
14 3 21 8 05 —-0.5i —-0.5 0.5
10 0 0 0 05 0.5 0.5 0.5 5
0 —2+42i 0 0 0.5 —-0.5i —-0.5 0.5; 6
0 0 —2-2i 0 05 —-05 05 -05 7
| 0 0 0 -21105 05 -0.5 —-0.5: 8
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The product U ~! B in the RHS as shown below is given as

05 0.5 0.5 0.5 5 13

0.5 —0.50 —0.5 0.5 6 = I+ . This can be viewed as
05 —-05 05 -05 7 -1

05 0.5 -05 -0.5i 8 —1—i

the DFT of the vector ‘B’ (Except the scaling factor). The vector thus obtained is
in frequency domain. The vector thus obtained in frequency domain is scaled using
the diagonal matrix D as shown below. DU~ B

10 O 0 0 13 1.3Xx102
N 0 —2+2i 0 0 =14+ _ —0.040i X 10?

0 0 -2-2i 0 —1 0.02X10?

0 0 0 —20[-1-i 0.04i X102

The obtained vector is then multiplied with the Unitary matrix U can be viewed as
the inverse DFT as shown below to obtain the circular convolved output.

05 05 05 05 1.3X102 66
0.5 0.5i —0.5 —05i||—0.040iX10%>| |68
05 —0.5 05 —05 0.02X10%2 |~ |66
05 —0.5i —0.5 0.5i 0.04i X102 60

1.24 Normal Matrices

The matrix A that satisfies the condition A7 A = AA™ is called Normal Matrix.
Hermitian matrix, Unitary matrix, Permutation matrix and circular matrices are
called Normal matrices. All the Normal matrices are diagonalizable.

Summary (see Fig. 1.6 below)

1. For any matrix A of size m xm, the Eigen vectors corresponding to distinct Eigen
values are independent. The Eigen vectors corresponding to the particular Eigen
value are independent, because it is the basis for the Null space of the matrix of
the form |[4 — AI]. So in case of non-deficient matrix A, the Eigen vectors forms
the basis for the vector space R™.

2. All the Normal matrices are non-defective. (i.e.) Any Normal matrix A of size
m x m can be represented as the product of UDUH | where U is the unitary matrix
and D is the Diagonal matrix. The Eigen vectors corresponding to various Eigen
values are orthogonal to each other. Hermitian Matrix, Unitary Matrix (Example
DFT Matrix), Permutation matrix and the Circular matrix are the examples for
the Normal matrices. All Normal matrices need not be invertible.
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Fig. 1.6 Set of deficient and non-deficient matrices

~NON N AW —

. Deficient Matrices

. Non-Deficient Matrices
. Invertible Matrices

. Unitary Matrices

. Permutation Matrices

. Hermitian Matrices

. Normal Matrices

The Eigen values of the Hermitian matrix A of size m x m are real. Any arbitrary
Hermitian matrix can be represented as the product of UDUH , where U is the
unitary matrix and D is the Diagonal matrix. The Eigen vectors of the Hermitian
matrix ‘A’ forms the orthogonal basis of the vector space R™”. Hermitian matrix
need not be invertible.

The magnitude of the Eigen values of the Unitary matrix A of size m x m is 1.
The value can be complex. This matrix can also be represented always as UDU .
where U is the unitary matrix and D is the Diagonal matrix. The Eigen vectors of
the Unitary matrix ‘A’ forms the orthogonal basis of the vector space R . Unitary
matrix is always invertible.

DFT matrix is the example for the Unitary matrix which is the type Normal
matrix. DFT matrix is always diagonalizable (i.e.) non-deficient. The DFT matrix
A of size m x m can be represented as UDU | where U is the unitary matrix and
D is the Diagonal matrix. The Eigen values of the matrix A hold any of the
following values i, —I, 1, —1. DFT matrix is the Unitary matrix and is always
invertible. The Eigen vectors of the DFT matrix ‘A’ forms the orthogonal basis
of the vector space R™.

Permutation matrix is the example for the unitary matrix, which is the type of the
Normal matrix and hence diagonalizable (i.e.) non-deficient. The permutation
matrix A of size m x m can be represented as UDU™ . The magnitude of the
Eigen values of the permutation matrix is 1. Permutation matrix, which is the
unitary matrix, is always invertible. The Eigen vectors of the Permutation matrix
‘A’ of size m x m forms the orthogonal basis of the vector space R™.

Circular matrix is the type of Normal matrix and hence diagonalizable (i.e.) non-
deficient. The circular matrix A of size m x m can be represented as U ¥, where



58 1 Matrices

U is the unitary matrix and D is the Diagonal matrix. Circular matrix need not be
invertible matrix. The Eigen vectors of the Circular matrix ‘A’ forms the orthog-
onal basis of the vector space R™.

1.25 Applications of Diagonalization of the Non-deficient
Matrix

(a) Solving the Difference Equation of the form Uy, = AUy, where

x1(k+1) x1(k)
x2(k +2) x2(k)
U1 = | x3(k +3) | Upr = | x3(k)

xn(k + 1) xn(k)
Where ‘A’ is the non-deficient n X n matrix.

Example 1.25. Let the non-deficient 2 X 2 matrix be A = |} (1)j|

| xIl(k +1) _ [ x1(k)
Ukt = [xZ(k + 2)] and Uy = |:x2(k)}

Solving Ui+ = AUy is equivalent to solving the equation Uy = Ak U,.
Note that the matrix A is the unitary matrix. Therefore the matrix A can be rep-
resented as A = ED EX (as given below), where E is the Eigen matrix, in which
the columns are the Eigen vectors.

11

o)

0.5257 —0.8507||—0.6180 0 0.5257 —0.8507
—0.8507 —0.5257 0 1.6180] | —0.8507 —0.5257

= [A]* = EDE® EDE® EDE® EDE™ . .. (*k'times)

Note that EE! is the Identity matrix and hence

[A]F = EDDD...(k times)EH
= [A]* = EDFEH
(—0.6180) 0 }

k _
Also D _[ 0 (1.6180)



1.25 Applications of Diagonalization of the Non-deficient Matrix 59

Thus solution to the above difference equation is given as

U, = A*Uy = EDFEH U,
_ [ 0.5257 —0.8507] [(—0.6180)* 0 0.5257 —0.8507] ,
~ | -0.8507 —0.5257 0 (1.6180)% | | —0.8507 —0.5257| °

1
o= ]

Uy = [ 0.5257 —0.8507} [(—0.6180)k 0 }[0.5257 —0.8507} H

| —0.8507 —0.5257 0 (1.6180)% | | —0.8507 —0.5257 | 0
_ [05257 —0.8507][(—0.6180)% 0 0.5257
~ |-0.8507 —0.5257]| 0 (1.6180)* | | —0.8507

[0.5257 —0.8507] [(0.5257)(—0.6180)%
| —0.8507 —0.5257 [ (—0.8507)(1.6180)*

~ [0.5257  —0.85077 [(0.5257)(—0.6180)*
| —0.8507 —0.5257 | | (—0.8507)(1.6180)%
T [(0.5257)%(—0.6180)% + (—0.8507)2(1.6180)]
| (0.5257)(—0.8507)(—0.6180)% + (0.5257)(—0.8507)(1.6180)*

[ [(0.2764)(—0.6180) + (0.7237)(1.6180)]
| [(—0.4472)(—0.6180)% + (0.4472)(1.6180)*

(b) Solving Differential Equation of the form
uy (1)
d%’ ) = A U(t), where U(t) = uz(1) and A is the Non-deficient matrix.
un ()
Solution for the above differential equation is of the following form

U(t) = eA'U(0)

Let us use the non-deficient matrix A = |} (1)] and U(0) = |:(1)]

To compute e?, Diagonalization of the matrix ‘A’ is used.

A @2 @’
Aa_;. 4
e’ =1+ T + 2 + 3 +
4 A  EDEHEDEH®  EDEHEDEY EDEY
et =1+ 5+ 5 + 3 + -

EDEH  EDDEH  EDDDEH
+ +

A _ H
= e = EIE” + 0 + 2 3
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A_g(y D DD DDD £H
St =E\l+ gttt
ieAzEeDEH

= e = EP'EH

For the given problem the solution of the differential equation is given as follows.

U(t) = eU(0)
= U(1) = Ee”' EFU(0)

L U( = [ 05257 08507 b, [ 05257 08507 "
~ [-0.8507 —0.5257 —0.8507 —0.5257] |0
~0.6180 0
here D =
e [ 0 1.6180}
— oDt _ —-0.6180 O . —0.61801 0
B 0 16180 ~ | 0  elstsor
= U(t)

[0.5257 —0.8507] [e~0-6180 ¢ 0.5257 —0.8507] | 1
| —0.8507 —0.5257 0 el-61807 |1 _0.8507 —0.5257] | 0

_ [05257 —0.8507][ 0.5257¢0-6180¢
| —0.8507 —0.5257 | (—0.8507)¢!-61801

[0.5257 —0.8507] [ 0.5257¢0-6180¢
| —0.8507 —0.5257 | [ (—0.8507)e1-6180¢

_ [0.5257 —0.8507][ 0.5257¢0-6180¢
| —0.8507 —0.5257 ] | (—0.8507)¢1-6180¢

[ 0.2764¢70618% 1 (0.7234¢1-6180¢
| —0.447270-61807 1 0.4472¢1-6180¢

1.26 Singular Value Decomposition

Consider the matrix A of size m x n. The matrix A can be represented as the prod-
uct of Hermitian transpose of the unitary matrix Uy, Diagonal matrix ‘D’ and the
unitary matrix ‘U,’. A = U1DU2H.

Let the unit magnitude Eigen vector ‘v;’ corresponding to the matrix A7 A
satisfies the condition AT A4 v; = A; v;. Multiplying A on both sides, we get
AAT (A vi) = Xi(4 v;). = (A v;) is the Eigen vector of the matrix AAT. The
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corresponding Eigen value is A;. The magnitude of the vector Av; is obtained as
Av)T(Av;) = v;iTATAv; = L;v;T v; = A;. The Unit magnitude Eigen vector of
the matrix AAT can be represented as Av; / ;. Let it be u;

Rewriting the above equation as Av; = +/A; u;

Example 1.26. Consider the matrix A = |:411 ? 2:|

T 14 32
A" = [32 77]
The Eigen values of the matrix AAT are 0.5973, 90.4027 and the corresponding
—0.9224| 10.3863
0.3863 ] ’ |:O.9224]
Similarly the Eigen values of the matrix AT A are 0, 0.5963, 90.4027 and the
corresponding Eigen vectors are given as

Eigen vectors are given as |:

—0.4082 —0.8060 0.4287
0.8165 |,| —0.1124 | and | 0.5663
—0.4082 0.5812 0.7039

The Eigen vectors of the matrix AA” are obtained as following for the corre-
sponding non-zero Eigen values.

_ - [—0.80607]

i z Z —0.1124

- - L 05812 | [ 0.9224
0.5963 ~ |-0.3863

 [—0.4287]

i Z Z 0.5663

- - L 07039 | _0.3863:|

V/90.4027 ~10.9224

Note that it is same as the one computed directly from the basic definition. Also note
that the Eigen vectors thus obtained are orthonormal to each other as the matrix AAT
and AT A are Hermitian matrix.

Thus the matrix

123 —0.8060 —0.4287
|:4 5 6:| 0.1124 0.5663
0.5812 0.7039

0.9224 0.3863 | | +/0.5963 0
—0.3863 0.9224 0 +/90.4027



62 1 Matrices

As the Eigen vectors are orthonormal, the matrix A can be represented as follows as
follows

_[123
456
r—0.8060 —0.42877"
_ [ 0.9224 0.3863] |:«/0.5963 0 ] 01124 05663
—038630.9224] 0 VO0.4027]| (5015 07039
T

[—0.8060 —0.4287]
—0.1124 0.5663
| 0.5812 0.7039 |

0.9224 0.3863| | +/0.5963 0
—0.3863 0.9224 0 4/90.4027

We can even include the Eigen vector corresponding to the zero Eigen value of
the matrix A7 A as shown below.

N 123

456
_ [ 0.9224 0.3863
"1 —0.3863 0.9224

+/0.5963 0 0| —0.8060 —0.4287 —0.4082 ’
0 4/90.4027 0 | | —0.1124 0.5663 0.8165
0 0 0 0.5812 0.7039 —0.4082

The above method of representing the matrix A as the product of the Unitary matrix
‘U;’, diagonal matrix ‘D’ and the Unitary matrix ‘U, are called Singular Value
Decomposition.

1.27 Applications of Singular Value Decomposition

1. Spectral factorization representation of the matrix is obtained using Singular
Value Decomposition as given below.

Example 1.27. From the Example 1.23, we get,

1 2 3

45 6|

—0.8060 —0.42877"
[0.9224 0.3863] [«/0.5963 0 } 01154 0aces

—0.3863 0.9224 0 V040270 e1n 07039

0.9224 0.3863 | | +/0.5963 0 —0.8060 —0.1124 0.5812
—0.3863 0.9224 0 4/90.4027] | —0.4287 0.5663 0.7039
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9224
= v0.5963 [_00938 63} [~0.8060 —0.1124 0.5812]

+ +/90.4027 [8'3222} [—0.4287 —0.5663 0.7039]

The above mentioned way of representing the matrix is called spectral factor-
ization. If the Eigen values are so small, we can neglect them in the above
representation and hence data compression is achieved.

2. Computation of Pseudo inverse of the non-invertible matrix
Case 1: When the matrix A7 A is invertible
Consider the case of solving the equation of the form Ax = b when ATA is
invertible.

100 5
x1
, 020 6
Let the equation be x2 | = .
003 4
x3
000 4
Multiplying A7 on both sides, we get
1000 100 xl 1 00 O0f]5
0200020 vl 02 00]]|6
0030 oo3x3_00304
00O0O0|][O0 0O 00 0O0]]|4
1 0 0f[xl 5
=10 4 0] |x2|=112
00 9(|x3 12

In this case x1 = 5,x2 =3,x3 = %

1 00
. . 020
Note that the solution corresponds to the projected column vector 00 3
000
x1 >
6
X2 | =
x3 4
0
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Also note that the matrix A7 4 is invertible and we have already shown that the
5

solution vector thus obtained is such that magnitude of the error vector -

~ B~

is minimized.

S B~ N N
~ O O O

Case 2: When the matrix AT A is non-invertible
Consider the case of solving the equation of the form Ax = b, where AT A is
non-invertible.

1
100o07]|" 5
) x2
Let the equationbe [0 2 0 0 3 =16
0030||" 4
x4
1 000
In this case A’x A = 8 3 (9) 8 is not invertible and hence projection method
0000

as used above cannot be used in this case.
By direct observation of the set of equations, the solution is obtained as follows

xl =5
x2=3
x2=4/3
x1
The variable x4 is arbitrarily chosen as 0 to reduce the length of the vector x§ .
X
x4

Thus the solution obtained above is of shortest length.
In both the cases the pseudo inverse matrix of the diagonal matrix A which is
represented as A is obtained as follows.
1 00O
Forthe Case 1 At =0 1 0 0
1
3

(el S]]

0 0
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The solution for the equation Ax = b, is obtained as x = A1h

100 0[5 5
=>x=[04100||6|=]3
00 F 0] 4 4/3
Similarly for the case 2,
1 00
0 L0
At =" 2
00 3%
000

The solution for the equation Ax = b, is obtained as x = A1h

1 00 5 5

=X = 0 % 0 6| = 3
= . =

00 3 A 4/3

000 0

Thus if the matrix A is the diagonal matrix the inverse of the matrix can be
obtained by inverting the non-zero diagonal elements of the matrix A with zero
elements unchanged.

If the matrix A is not the diagonal matrix, then SVD is used to represent the
matrix as A = U; DU, and obtain the vector x such that ||Ax—b || is minimized.

= we have to obtain the value for the vector x such that |U; DU, x — b|| is
minimized.

= ||[DU, x — U7 b|| is minimized. [Multiplying Unitary matrix on both
sides of the linear equation]

Note:
Multiplying with the unitary matrix on both sides of the linear equation will
not affect the distance as described below
In general ||[Ax — b||*> = (Ax —b)"(Ax — b)
Multiplying the Unitary matrix U on both sides we get,
|UAx — Ub|* = (UAx — Ub)" (UAx — Ub) = U
= x"APUHUAx — x" A" U Ub — b7 U" Ub
- b"U"Ub
= x"A"Ax —x"A"b — b"b — b"D
= (Ax —b)#(Ax —b) = |Ax — b|?
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Let y = U, x and the modified task is to minimize the norm |Dy — U ¥ 5|,
where ‘D’ is the diagonal matrix and hence solution for y is obtained as

y = D+U1Hb
= U,"x = DTUu, ¥
=x=U,D U, fp

Thus for any arbitrary matrix A, we can obtain inverse (If the matrix is invert-
ible) or pseudo inverse (If the matrix is not invertible) using the technique as

mentioned above.
A= 1 23
4 5 6

Example 1.28.
The inverse of the matrix A is obtained as follows.
Using SVD we get,

1 2 3
4 56
+/0.5963 0 0] |—0.8060 —0.4287 0.4082

0.9224  0.3863
= |:—0.3863 0.9224:| 0 /90.4027 0| | —0.1124 0.5663  0.8165

0 0 ol| 05812 07039 —0.4082
A+
[ 0 07 [—0.8060 —0.4287 0.4082 |
= [ 0.9224 0'3863} 0'8963 1 o||-01124 05663 08165
T 1 -0.3863 0.9224 V/90.4027 - : :
0 0 ol| 05812 07039 —0.4082
A+
[——— 0 07 [-0.8060 —0.4287 0.4082 |
= [ 0.9224 0'3863} 0'8963 1 ol |-01124 05663 08165
T 1-0.3863 0.9224 /90.4027 - : :
0 0 ol| 05812 07039 —0.4082

. Representing the matrix A as the product of Unitary matrix and the symmetric
matrix as shown below.

Using SVD, A = U; DU,

Inserting U>" U, in the middle we get

A = U, U, U,DULH

Note that the matrix U; UZH is the unitary matrix and the matrix UzDUzH is the
symmetric matrix.



Chapter 2
Probability

2.1 Introduction

[

Set: It is collection of well defined objects. Each object is referred as an element

2. The set B which is the subset of A (Represented as B C A), is a set whose

(O8]

element are also the elements of A
Set of no elements are called Empty set
Set operations:

e A union B (Represented as A U B or A + B) is the set that consists of the
elements which are either in A or B or in both.

¢ A intersection B (Represented as A N B or AB) is the set of elements which
are in both A and B.

o A complement (Represented as A or A€) is the set that consists of the elements
that are not present in the set A.

. Mutually exclusive sets (Disjoint sets): Two sets A and B are disjoint, if they

have no elements in common i.e. AB = ¢. In general The sets A1,A2,A3,... An
are disjoint if Ai Aj = ¢ fori # j

. Sample space: Set of all experimental outcomes
. Partition: A partition of a set is the collection of mutually exclusive sets

Al, A2...whose union is the sample space ‘S’
(i) IfAl + A2+ A3+ ... An = S and Ai Aj = ¢ fori # j, then Ai’s form a
partition of the set

. Event: Subset of the sample space

Certain event: S (Sample space)
Impossible event: ¢ (Null space)
Elementary event: One outcome of the experiment.

. Countable infinite set: The set C is countably infinite when there is one-to-one

correspondence between the elements of the set C and a set of all non-negative
numbers

E.S. Gopi, Mathematical Summary for Digital Signal Processing 67
Applications with Matlab, DOI 10.1007/978-90-481-3747-3_2,
© Springer Science+Business Media B.V. 2010
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2.2 Axioms of Probability

1. Probability of the event & represented as P(§) > 0.
2. P(S) = 1, where ‘S’ is the sample space.
3. If A1,A2,... An are such that Ai Aj = ¢ fori # j then

P (ZZI Ai) — ZZI P(Ai).

Note: If sample space is having finite number or infinitely countable number of
subsets, probabilities can be assigned to all the subsets of the sample space that
satisfies all the axioms mentioned in 2.2.

If sample space is having uncountable infinite number of subsets, it is not
possible to assign the probability to all the subsets of the sample space that sat-
isfies all the axioms mentioned in 2.2.

2.3 Class of Events or Field (F)

Class of Events is the subset of the sample space satisfying the following properties.

1. fA CF,then A C F.
2. IfA, BeF,thenA +B € F.
3. Sigma Field: If Al, A2, ... €F, Y2 AieF.

2.4 Probability Space (S, F, P)

The probability space (S, F, P) consists of Sample space S, Field F and the proba-
bility measure P. The probability measure maps every element of F to a number less
than 1 and greater than 0. The measured value is the probability.

2.5 Probability Measure

The probability of the event A can be measured as follows.
Method 1:

Probabilities of elementary events are assumed as equal. Let the number of out-
comes belonging to the event A is N4 and the total number of outcomes is N, then
P(A) = N4/N. The probability measured in this technique depends upon how the
set of possible outcomes are defined.
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Method 2:
Repeat the experiment N times. Let 14 is the number of times event A occurs,
then P(A) = limy o0 3t

2.6 Conditional Probability

Case 1 (Fig.2.1):

Let ‘nA’ and ‘nB’ be the number of outcomes belonging to the event A and B
respectively. Also let ‘n’ be the total number of outcomes.

Probability of the event A is nA/n

Probability of the event B is nB/n

Probability of the event A given B has occurred is given as follows

P(A/B) = nA/nB = ? % = P(A)/P(B) = P(AB)/P(B)

Case 2 (Fig.2.2):

In this case P(A/B) = Probability of A given B has occurred is 1. This can also
be obtained using the formula obtained in the case 1. P (A/B) = P (AB)/P(B) =
P(B)/P(B) =1

Therefore P(A/B) = P(AB)/P(B) is considered as the common formula that
can be used in both the cases.

nA "B n
I T T 1

S

Fig. 2.1 Conditional probability — case 1

B nA n
[ | | 1

S

Fig. 2.2 Conditional Probability — case 2
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2.7 Total Probability Theorem

Let A1, A2 ... An be the partition of the sample space S.

B=BS=B(Al1+ A2+ A3+...An) = A1B+ A2B + A3B +...AnB

P(B) = Z; P(AiB)

=) P (%) P(Ai)

i=1
. B
Total Probability Theorm : P(B) = Z P (—) P (Ai)
P Ai

Note that Ai Aj = ¢ fori # j

2.8 Bayes Theorem

P(A/B) = P(AB)/P(B)

P(B/A) = P(AB)/P(A)
P(B)P(A/B) = P(B/A)P(A)

= P(B) = P(A)P(B/A)/P(A/B)

Bayes Theorem : P(B) = P(A) P (g)/ P (%)

Let A1, A2, ... An forms the partition of the sample space S.
In general P(Ai/B) = __PUANP(F)
Yi1 P(F7) P(4D
Note that Ai Aj = ¢ fori # j

2.9 Independence

1. A and B are independent if P(AB) = P(A)P(B). Also P(A/B) = P(A)
2. Three events A, B and C are independent if it satisfies the following conditions

P(AB) = P(A)P(B)
P(AC) = P(A)P(C)
P(BC) = P(B)P(C)

P(ABC) = P(A)P(B)P(C)
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P(AB/C) = P(ABC)/P(C)
P(ABC)

2.10 Multiple Experiments (Combined Experiments)

1. Consider the sample spaces S1 and S2 corresponding to the two independent
experiments.

{S1} ={1,2,3,4,5,6}
{S2} = {h,t}
Sample space of the combined experiments is represented as S = S1XS2 =
{(a, b), a € S1, b e S2}
2. Consider the event A = {2, 3} € S1 and the event B = {h} € S2.
The event{AXS2} = {(2,h)(3,h)(2,1)(3,1)}
The event{S1XB} = {(1,h)(2, h)(3, h)(4, h)(5, h)(6, h)}
{AXB} = {(2, h)(3, h)}which can be obtained using the following.
{AXB} = {AXS2} N {S1XB}
P(AXB) = P(AXS2)P(S1XB)

Some properties of the probability derived from the Axioms of the probability
1. P(A) =1—P(A)
Proof. A+ A =S (A and A are Mutually Exclusive Events)
P(S) = P(A + A) = 1 [Second Axiom]
= P(A) + P(A) [Third Axiom]
= P(A) =1—- P(4)
2. P(A) <1
Proof. P(A) = I — P(A) [From proof 1]
P(A) > 0and P(A) > 0 [First Axiom]
= P(A) <1
3. P(®)=0
Proof. The Event A = A + @ [A and ® are Mutually Exclusive Events]

P(A) = P(A) + P(P) [Third Axiom]
= P(®) =0
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4. {A;}_, is a partition of the sample space S (Fig.2.3). For any event
B.P(B)=}[_ P(B 4))

Proof. From the diagram, it can be shown that any event ‘B’ can be represented
as the union of disjoint events \ J'_, B A;

(i.e) B =U'"_ BA;
P(B) = P(U;l:lB A;j) = P(BAy + BA, + BA3 + BA4 + --- BAy)
n
= P(BA,) + P(BAy) + ... P(BA,) = Zi:l P(BA;)

5.If AC B, P(A) < P(B) (Fig.2.4)
Proof. A = B + BA (Note that B and B A are disjoint events)
= P(A) = P(B) + P(BA)
Also 1 > P(BA) > 0and hence P(A) > P(BA)

6. P(A+B+C) = P(A)+P(B)+P(C)—P(AB)—P(AC) = P(BC)+ P(ABC)
(Fig.2.5)

Fig. 2.3 Partition of the
sample space S

Fig. 2.4 Venn diagram
illustrating A C B
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Fig. 2.5 Venn diagram
illustrating A + B + C

Proof. A+ B + C can be represented as the summation of three disjoint events
as given below.

A+ B+ C = A+ AB + (A + B)C (Disjoint Events)
= A+B+C=A+(1—A)B+ ABC
= P(A+ B +C)=P(A)+ P((1—A)B) + P(ABC)

On simplification

A+B+C=A+(1—-A)B+ (1—A)(1 — B)C (Disjoint Events)
—~ A+B+C=A+B—AB+(1—B—A+ABC
== A+B+C=A+B—-—AB+ C —BC—AC + ABC
— P(A+ B+ C) = P(A) + P(B) — P(AB) + P(C) — P(BC)
—P(AC) + P(ABC)
= P(A+B+C)<P(A)+ P(B)+ P(C)
7. In general P ({A;}7_,) < Y7, P(4))

(1t can be proved using Mathematical Induction)
8. If two events A and B are independent, A and B are independent

Proof. Given: P(AB) = P(A)P(B)

AB =B — AB

P(AB) = P(B) — P(AB)
= P(B) — P(A)P(B)

= P(B)(1 — P(A))

= P(B)P(A)
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Thus A and B are also independent.

= Aand l? are independent (property 8)
= A and B are independent (property 8)

9. If three events A, B and C are independent, the events A and B + C are
independent.

Proof. Given: P(ABC) = P(A)P(B)P(C)

P(A(B + C)) = P(AB + AC) = P(AB) + P(AC) — P(ABC)
P(A)P(B)+P(A)P(C)—P(A)P(B)P(C)
P(A)(P(B) + P(C) — P(BC))

= P(A)P(B +C)

= A and B + C are independent

10. IfA, B and C are three events, P(AB/C) = P(A/BC)P(B/C).
Proof.

P(AB/C) = P(ABC)/P(C)
= P(A/BC)P(BC)/P(C)
= P(A/BC)P(B/C)

11. If A, B and C are three events, P(ABC) = P(A/BC)P(B/C)P(C).
Proof.

P(ABC) = P(A/BC)P(BC)
= P(A/BC)P(B/C)P(C)

2.11 Random Variable

Consider the probability space (S,F,P), then the mapping of the outcomes s € F to
the real line is called random variable. (i.e.) X: F— > R (Fig. 2.6).

Mapping must be chosen such that every subset of the real line of the form
(—00, a] should be an event in F. The subset of the real line of the form (a, b] is
called Borel set represented as B.

Let A € B. Px(A) = P({s € S : X(s) € A}), where {s € S : X(s) € A} is called
inverse image of A. Thus the random variable maps the probability space (S,F,P) to
the Borel space (R, B, Px)
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Fig. 2.6 Illustration (S,F,P)
of the random variable

T
a R

(R,B,Px)

2.12 Cumulative Distribution Function (cdf) of the Random
Variable ‘x’

Fx (o) = Px(X < a)

1. 0< Fx(a) <1 foralla
2. limyg—eo Fx(a) =1
3. limy——co Fx () =0
4. Fx () is the non decreasing function. (i.e.) If ¢l < a2, then Fy (¢l) < Fx(a2)
5. If Fx(a0) = 0, then Fx (o) = 0 forall @« < a0
6. Px(a <X <b)= Fx(b) — Fx(a)
7. If X and Y are two random variable such that X(s) < Y(s) for all s € S, then
Fx(a) > Fy(a) for all « (Fig.2.7)
Proof.
Fx(a) = P(X = a)
Fy(b) = P(Y <b)
By definition

Fx(a) = Fy(b)
=PY <a)+Pla<Y<bh)
= Fy(a) +K

The constant K ranges from 0 to 1 and it is the positive quantity and hence Fx (a) >
Fy (a) for all values of ‘a’
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Y

Fig. 2.7 Tllustration of the property 7 of the CDF

2.13 Continuous Random Variable

A random variable X is continuous if Fy () is the continuous function of «.

2.14 Discrete Random Variable

A random variable X is discrete if and only if it maps S to a countable subset of R
(Real numbers).

2.15 Probability Mass Function

If the random variable is discrete, probability of the particular value of the random
variable can be computed using the function known as probability mass function.
Probability of the random variable X = « is represented as P(X = «).

2.16 Probability Density Function

If the random variable is continuous, probability of the random variable X over the
smallest range o fo o + A« is computed as follows.

Aloitrll)0 [Fx(a 4+ Aa) — Fx ()]
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Define fy (o) Ax be the probability of the random variable x over the smallest range
atoo+ Ax

= fx(@)Aa = limag—o[Fx (o + Aa) — Fx ()]
= fx(e) =limag—o [Fx (¢ + Aa) — Fx(a)] /Aa
The function f («) is called probability density function.

" )AEIEO [Fx(a 4+ Aa) — Fx ()]
o (a

A

dFx(a)
dx

= fx(@) =

Properties:

1. fx(a) > 0 forall a. F [Because F is the non-decreasing function]
2. Fx(a) = [% fx(@) da

3. )% fe(x)dx =1

4. [¥2 fo(x)dx = Fx(x2) — Fx(x1)

2.17 Two Random Variables

Consider the probability space (S, F, P), then the mapping of the outcome s € F
to the real line is called random variable. This mapping can be done in multiple
forms and are called as Multiple random variables. In particular if the mapping is
done in two different forms, then the corresponding mapping is called two random
variables as shown in the Fig.2.8. Two random variables are completely described
by the Joint distribution function P[X < x, Y < y] and it is usually represented as

Fxy(x, y).

Properties of joint distribution function and joint density function with two
random variables.

- im0 Fxy(x,y) = P(X = 00, Y <'y) = Fx(y).

. limy o0 Fxy(x,y) = P(X <%, Y < 00) = Fx(x).

. limy o Fxy(x,y) =0

. limX_)_oo ny(x, y) = 0

. P(x1 <X <x2,Y < 00) = Fxy(x2,y) — Fxy(x1,y).

. P(x1 <X <x2,yl <Y <y2) = Fxy(x2,y2) — Fxy(x2,y1l) — Fxy(x1,y2) +
Fxv(x1,yl)

- 0=Fxy(x,y) =1

8. It is the non-decreasing function with both ‘x’ and ‘y’

AN AW~

~
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Fig. 2.8 Illustration of the (S,F,P)
two random variables

<

a b R
(R,B,Px) (R,B,Py)

9. The relationship between the Joint probability density function of the two ran-
dom variables ‘X’ and Y’ and the corresponding joint distribution function is
given below

82FXY (X, y)

Sxy(x,y) = oxdy

b a
Fxy(a,b) =/_ /_ Sfxy (x,y)dx dy

10. Probability of the event A corresponding to the random variable X which ranges
from xmin to xmax and the random variable Y which ranges from ymin to ymax
is computed using the joint density function as given below

xmax ymax

P(A)/ /fxy(x’y)dx dy

xmin ymin

11. The marginal probability density function of the random variable ‘X’ is given
as (Fig.2.9)

fr(o) = / Fry (xoy) dy

Fr(y) = /_ v (x.y) dx



X |

x x

P(AB) = P(A)P(B)
e can write, Fxy(x,y) = P(X <x,Y <y)

=PX =x)(Y =)
= Fx(x)Fy(y)

So, fxr(x,y) = fx(x) fr ()



80 2 Probability

2.20 Some Important Results on Conditional Density Function

1. ‘X’ is continuous, ‘Y’ is discrete, then Fy;y—,(x) is computed as described
below

Fxjy=y(x) = P(X <x/Y =)
_P(X <x,Y =y)
- P(Y =y)

P(X <x) =Zyp(x <x,Y =y)

= P(X <x)= ZY Fx/y=y(x)P(Y =y)
= Fx(x) = ) Fx/y=y()P(Y = y)

= fx() =) fxyy=y()PY =)

2. ‘X’ is continuous and ‘Y’ is continuous, then Fx y—, (x) is computed as follows
Fxjy=y(x) = P(X <x/Y =)
= lim P(X <x/y <Y <y+ Ay)
Ay—0

I P(X <x,y <Y <y+ Ay)

= [i

Ay—0 P(y <Y <y+ Ay)

P(y<Y <y+Ay/X <x)P(X <x)

= lim
Ay—0 P(y =Y <y + Ay)

— iim Py<Y <y+Ay/X <x)P(X <x)
Ay—0 P(y =Y <y + Ay)

— lim (Fy)x<x(y + Ay) — Fy;x<x(»)) P(X < x)
Ay—0 Fy(y + Ay) — Fy(y + Ay)

_ Urx<x () PX < x)

fr(y)

(fy/x<x(¥)P(X =< X))
fr(y)

Also P(X = x/Y = y) fr(¥) = fr/x<x(Y) P(X = x)

= PX <x/Y =y)=

= [P(X =x/Y =y)fr(y)dy

- [ Fr/xer(PX < x)dy
= P(X <x)
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Also consider

PX<x,y<Y<y+A
P(X <x)Y = y) = lim LA =Xy =V =y+4y)
Ay—0 P(y <Y <y+ Ay)
. Fxy(x,y +Ay)— Fxy(x,y)
= Fyjy=y(x) = lim
r=y) = lim, Fy(y) — Fr(»)
. [Fxy(x,y + Ay) — Fxy(x,y)] /Ay
= Fyx/y=y(x) = lim
/Y=y ay>0  [Fy(y + Ay)— Fr(»))/ Ay
dFxy(x,y)
__ a9
fr(y)
?Fxy (x,)
dxdy

fr(y)
Sxy (x.y)
fr(y)

= / Fxrv—y (@) fr )y = fr(x)

= Fyjy=,(x) =

= fx/y=y(x) =

= fX/Y=y(x) =

= fr(x) = f F v —y @) fr )y

Example 2.1. Let Fxy(x,y) =

1 |xe[2,00]Ny €[3,00] Y (0000)
151 x €0,2] Ny € [3,00] 172 |1

sl x €2,00] Ny €0,3] (2,3)

. xel0,2]ny €0,3] 174 |12

0 Else where 0,0) X

For the above specification Fy (x) and Fy (y) are computed as follows (Fig. 2.10)

Fx(x) = P(X <x,Y <oo)and Fy(y) = P(X <00,Y <)

Example 2.2. Letthe event ‘B’ be X <b

Then,
P(X <x,X<b)
F =P(X <x/X<b)= — =~ = 7
X/Xsb(x) (X <x/X<b) P(X <)
= FX/Xsb(X) =1 for X > b
_ Fx(x)

= for X <b
Fx(b)

Conditional Probability density function can be obtained by differentiating condi-
tional distribution function.
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1/2 12

Fig.2.10 Fx(x) and Fy (y) of the Example 2.1

Fig. 2.11 Additive noise
model of the channel Y
transmission — a( .) %A_
X X
N
dFx/p(x)

(i.e) fx/B x) =

dx
= fX/Xsb(X) =0 for X > b
f
= x(x) for X <b
Fx(b)

Example 2.3. Consider the signal (random variable X) which holds the values 1
or —1 with known probability. Consider that signal that is corrupted by the additive
noise signal (random variable N) to obtain the output signal (random variable Y).
The probability density function of the random variable N is known to be Gaussian
with mean = 0 (Fig.2.11).

The corrupted signal Y is processed using the transformation function g (.) to es-
timate the value of the X. Consider the task of obtaining the transformation function
g(.) so that the probability of correct decision is maximized.

P(Correct decision) = / P((correct decision)/Y = y) fr (y)dy
Y

(See Section 2.20)
Let us redefine the problem as

max . P((correct decision)]Y = y))V'y

Suppose X = 1 is sent then,

PX=1/Y =y)>PX=-1/Y =y)
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fy_,(y) fy__;(y)
X PX=1)> X """

fy(y) fy(y)

Sr/x=1(») o P(X =-1)
frix=—1(y) P(X =1)

P(X = —1)

We have,

Fy;x=1(y) = P(Y <y/X =1)
=PX+N<y/X=1
=P+ N <y
=P(N=y-1
=Fy(y—1)

Differentiating both with respect to y,

I(Fy/x=1(y) _ 0Fn(y—1)
dy 9y
frix=10) = fn(y —1)

So,

frix=1(») = fn(y —1) and,
Srix=—1(y) = fn(y +1)
Then,
fy -1 _ PX =-1)
Ny +1)  PX=1)
If fn(n) is a Gaussian density function with u = 0

1

2
f(m) = em (/2
V27 o2
Then,
1 = 1 _(y2—12)2
fulr =1 = e
el 41 = e
N - Van 02(3 .
Now,

Fy(y—1) _ P(X=-1)
fwo+D T PE =)
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_o=02 o+p2  P(X =-1)

e 202 e 202 >

POX =1)
o P(X =—1)
T TP =)
4y P(X = —1)

202 - "TP(x =)
02 P(X = —1)

Sy
YR = 1)

Thus the transformation function g(.) is obtained as follows.

P(X =-1)

— = Decide X = 1, otherside decide X =-1
P(X =1)

If >021
—in
r=5

2.21 Transformation of Random Variables of the Type
Y = g(X)

Consider the random variable ‘X’ which is transformed into another random vari-
able Y’ using the transformation function defined as Y = g(X). The graph relating
the Y and X is as shown in the figure given below (Fig.2.12).

Solving Y = g(X) for the general variable ‘y1’ gives x1, x4, x5. (i.e.) g(x1) =
g(x4) = g(x5) = yl. Also note that they belongs to the region where there are
piece-wise monotonically increasing or decreasing function.

y
2 /-\
y Ay
y1
Ax1 Ax4 AX5
x1x2 x3 x4 x5 x6 X

Fig. 2.12 Transformation of random variables-case 1
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From the basics of probability theory
P(yl <y <y2) =P(xl <x <x2) 4+ P(x3 < x < x4) + P(x5 < x < x6)

Ay fy(y) = Ax1 fx(x) at x = x1 + Ax4 fx(x)
= x4 + Ax5 fx(x)at x = x5

Note that magnitude of Ax1, Ax4 and Ax5 are considered to compute fy (y)

Therefore, fy (v) = fx (x1) ‘%‘ T frled) ‘ﬂ‘ T fx(xS) ‘ﬂ‘
y Ay Ay
Sx (x1) n Sfx (x4) n Sfx (x5)

dy _
I at x = x5

= fr(y) = o

dx

— dy —
at x = x1 ‘Eatx—x4

In general, probability density function of y (i.e.) fy (y) is obtained as follows.
Given fx (x) and the transformation Y = g(X).

1. Obtain the solutions for the equation Y = g(x) for the general variable ‘y’, so
that x1,x2, ...xn are obtained. Note that x1,x2, ...xn are represented in terms
of ‘y’.

2. fr(n) =Ty

Zc |at x=xi
3. The range of ‘Y’ can be obtained from the range of ‘X’ and the transformation

equation Y = g(X).

2.22 Transformation of Random Variables of the Type
Y1 = g1(X1, X2), Y2 = g2 (X1, X2)

Given fx1x2(x1,x2),Y1 = gl(X1,X2),Y2 = g2(X1, X2), friv2(¥1,y2) is
obtained as follows

Also note that the functions gl(.) and g2(.) are invertible. (i.e.) There exists the
function h1(.) and h2(.) such that X1 = h1(Y1,Y2) and X2 = h2(Y1,Y?2).

Consider the rectangle obtained from the intersection of lines Y1 = yl,
Yl = yl + Ayl and Y2 = y2, Y2 = y2 4+ Ay2 in the Y1-Y2 plane. The
obtained rectangular region is represented as black shade in the Y1-Y2 plane.

Also, consider the curve ‘a’ in the X1-X2 plane which is obtained by joining the
set of points (X1 = x1, X2 = x2) which satisfies the equation gl (x1,x2) = yl.
Similarly curve ‘b’, curve ‘c’ and curve ‘d’ are obtained by joining the set of points
(X1 = x1,Y1 = yl) which satisfies the equation gl(x1,x2) = yl + Ayl,
g2(x1,x2) = y2, g2(x1,x2) = y2 + Ay2 respectively. The shaded region rep-
resented in the X1-X2 plane (see Fig.2.13)) is obtained as the intersection of
the curves ‘a’, ‘b’, ‘¢’ and ‘d’. This shaded region can be approximated as the
parallelogram.
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Y2
X2

y2 + Ay2

y2

Y1 X1

y1 y1 + Ayl
a: g1(x1,x2)=y1
b: g1(x1,x2)=y1+Ay1
c: g2(x1,x2)=y2
d: g2(x1,x2)=y2+Ay2
Fig. 2.13 Transformation of random variable-Case 2

From the basics of probability theory, the probability belonging to the shaded
region in the Y1-Y2 plane is equal to the probability belonging to the shaded
region in the X1-X2 plane. Therefore, fyiya2(y1, y2) [Area of the rectangle]
= fx1x2(x1, x2) [Area of the area of the parallelogram]

Consider the curve a: gl(x1, x2) = y1. The set of points on this curve satisfies
the equation x1 = hl(yl,y2) and x2 = h2(yl, y2). Note that ‘y1’ is constant.
Hence the points on this curve ‘a’ can be rewritten as x1 = h1(y2) and x2 = h2(y2)
for the fixed Y1 = yl1.

Similarly for the curve b: The invertible equations for the equation g1 (x1, x2) =
y1 + Ayl can be written as xI = hl(y2) and x2 = h2(y2) for the fixed
Y1l =yl + Ayl

For the curve ‘c’: The invertible equations for the equation g2(x1, x2) = y2 can
be written as x1 = h1(y1) and x2 = h2(y1) for the fixed Y2 = y2.

For the curve ‘d’: The invertible equations for the equation g2(x1,x2) = y2 +
Ay?2 can be written as x1 = h1(yl) and x2 = h1(y1) for the fixed Y2 = y2 4 Ay2.

Thus the rectangle with the co-ordinates mentioned and the corresponding paral-
lelogram with the co-ordinates marked is as shown in the Fig. 2.14.

Point 1 (p1) on the curve ‘b’ can be obtained as x1+ (rate of change of hl with
respect to y2)(dy2) for the X1 co-ordinate and x2+ (rate of change of h2 with re-
spect to y2)*dy2.

Point 2 (p2) on the curve ‘c’ can be obtained as x1+ (rate of change of h1 with re-
spect to y1)(dy1) for the X1 co-ordinate and x2+ (rate of change of h2 with respect
to yl)*dyl.
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(y1+dy1,y2) (y1+dy1,y2+dy2) curve a
p2 curve d
curve ¢
curve b
(x1,x2)
(y1.y2) (y1,y2+dy2)

pl:  x1+ ﬂ1 dy2 x2+ ﬂ2dy2
ay2 ay2

p2: xt+ MMay1 x2+ M2qy1
ay2 ay1

Fig. 2.14 Rectangle to Parallelogram mapping for the transformation of random variable

Thus the co-ordinates for the points ‘p1’ and ‘p2’ are obtained as follows.

dhl dh2
dy2,x2 + dy2)

Pl: | x1 4+ — —
(x + dy?2 dy?2

p2: (x4 WM gyt o+ 924
ol x — . X —
a1 ay1 ™

Thus the equation becomes,

friv2(¥1, y2) [Area of the rectangle]
= fx1x2(x1, x2) [Area of the Area of the parallelogram]

Area of the Rectangle = dyl dy2

dhld ) dh2d ) dhl dh2
“—dy2 ——dy Bkl
_|dy2 dy?2 _|dy2 dy2
Area of the parallelogram = Jkl 1 dn2 =\Jn dm dyl dy2
1 1t T ay
dhl  dh2
dy2 dy2
friva(Y1y2)dyl dy2 = fxix2(x1.x2) | o0 o dyldy2
dyl dyl
dhl  dh2
dy2 dy2

= fiir2(v1,¥2) = fxixz2 (x1,x2) dhl  dh2
dyl dyl
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dhl dh2
. dy2 dy2 ). . .
The matrix dhl dm2 is called as Jacobian matrix.
dyl dyl
Also it can be shown using the same procedure
dgl dg2
dx2 dx2
x1,x2) = 1,y2
Sxixa ( ) = friv2(y1,y2) del dg2
dx1 dx1

Example 2.4. The random variables X and Y are related via Y = g(X), where g(.)
is monotonically increasing function.

Fy(y)) =P(Y <y)=P@EX) <Y)=PX <g '(y) = Fx(g ' (y))
Leta=g '(y)

=y =g(a)

= Fy(g(a)) = Fx(a)

Example 2.5. Let X be arandom variable with uniform distribution over the interval
[—4 to 4] (Fig.2.15). Let the random variable Y = g(X).

where g(x) = x, x| <2
=-2, X<-=2
=2, X >2

The density function of the random variable Y is computed as follows.

P(Y <y)=P(gX)y) = P(X <g”(y)

y=9(x)
2
-2
2 X
-2
Fig. 2.15 Y = g(X) of the
Example 2.5
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From the graph (Fig.2.16)

Fy(oco) = P(Y <00)=P(X <00) =1

Fy(2)=P(Y <2)=P(X <o) =1

Fy(y)=PY =y)=PX =y)for —2<y=2
==PY <-2)=0

fr (y) is obtained by differentiating Fy (y) with respect to y as shown in the graph
below.

Note that there are two impulses in fy(y). One at y = —2 and another at
y=2=PY =-2)=1tand P(Y =2) =1

Example 2.6. Let X and Y are the two random variables such that ¥ = X2. Given
probability density function of the random variable X, the probability density func-
tion of the random variable Y is obtained as follows (Fig.2.17).

From the graph, Fy (y) = P(Y < y) = P(—=y = X = /y) = Fx({/y) —
Fx (=)

Fx(x)
fx(x) X
1/8 1
-4 4 X -4 4 X
Fy, ) fy(y)
1/4 1/4
14 4 34 18
) | 2 y 2| 2 y

Fig. 2.17 Y = g(X) of the
Example 2.6
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Differentiating on both sides gives

fy (y) = [fx (V¥) + fx(=/3)] fory <0

1
2.y
(a) If X is having the following probability density function

x2
fx(x) = 3e72ax >0
= 0, elsewhere
b [ﬂe_i‘:x — o]
2y L a
[Note that fy (x) = 0 for x < 0]

= fy(y) =

1
= fy(y) = [Ee_;a] fory >0

(b) If X is having the following probability density function

1 _(x2
fx(x) = (\/217—26 (202)f0r—oo <x <00
o

= fy(y) = L [;e_(zz ) + ! e_(ZJyZ):|
2y L2002 201c?
= fy () = e (352) S 20

V2Iyo?

(c) fy(y/X > 0) is computed as follows

Fy(y/X>0)=P(y <Y/X >0)
P(y<Y.X >0)
~ T PX >0
_ P(—/y<X=</y.X>0)
P(X >0)
P(0<X <.y
P(X > 0)
_ Fx (/) —Fx(0)
P(X >0)
_ Fx (/7) —Fx(0)
[1-P(X <0)
_ Fx () —Fx(0)
~ [1—Fx(0)]
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Differentiating on both sides gives

/X = 0= (ZW [~ Fx (0]

Example 2.7. Let X and Y are the two independent random variables, the proba-
bility density function of the random variable Z = X + Y is computed as follows
(Fig. 2.18).

From the Graph

! )[Fx(ﬁ))}foryzo

o0 =)y
Fz(z)=P(Z§Z)=P((X—i—Y)SZ):/ / fxy (x, y)dx dy

3 [0, [2) fxy (x,y)dx dy

= fz(z) = o
Using Leibnitz integration Formula
®Ta(z— d(—o0
= fz(2) =/ [%f}n(z—y,y)— ( )fXY(_OO’Y)
oo Z 0z
Y ofxy (x, y)
————dx| d
- /—oo 0z Y

= fz(z) = /00 fxy(z—y,y) dy

—00

X+Y=z

Fig. 2.18 Graph depicting X +Y =z
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fx(x) fy (y)

1/2

1/4

fz(2)

1/4

Fig. 2.19 Probability density function of the random variables X, Y and Z, where Z = X +Y

Note: Leibnitz integration
Differentiation of the integration with limits (Leibnitz integration)

a(x)
glx) = S (x,y)dy
b(x)
d d “© 9
B~ Dt vt~ T b()+/b Yy,

dx ® dx
X and Y are independent = f7(z) = [0 fx(z— y)fy (y) dy
= fz(2) =fx(2) *fy (2)
Suppose if X is uniformly distributed between 0 and 2 and Y is uniformly distributed

between 0 and 4, then the probability density function of Z is computed as shown
below (Fig.2.19).

Example 2.8. Let X and Y are the two independent random variables, the proba-
bility density function of the random variable Z = X/Y is computed as follows.

Fz() = P(Z<2) = P ((é) < z)
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To obtain the solution the Trick is to Compute

F%=Y(Z)ZP(Z§§=y>
=P(Z <=zY =y)/PY =y)
= Fz/=y@Q=P((X/ ¥ =y)=zY =y)/PY =)
= Fz/y=y(@) = P(X =zy)P(Y =y)/P(Y =)
[Because X and Y are independent]

= Fz/y=y(@/Y =y) = P(X =zy) = Fx(zy)
Differentiating on both sides gives,
= fz/y=y(2) = yfx(zy)

Also

P(Z < s <Y < A
F, s A —F i
= Fz/y=y(x) = lim zy(z.y + Ay) — Fzy(z.y)
Ay—0 FY(y + Ay)_FY(y)
o Fzy(@y + Ay) — Fzy (2 )] /A
= Fz/y=y(x) = lim [Fzy(z,y + Ay) — Fzy(z, y)] /Ay

dFzy(z,¥)
dy

fr(»)

2Fzy ( ¥)
dz0y

fr(y)
fzy (2, y)
fr(y)

= / Farv—y ) fr )y = f2(2)

= Fz/y=y(x) =

= fZ/Y=y(x) =

= fzyy=y(x) =

= 120 = [ fey— @ fr )y
fz/y=y(@) =y fx(zy)
= 120) = [ ytx@ty ()dy
Example 2.9. The random variable X and Y are independent and identically dis-

tributed random variables. Let Z = v/X2+ Y2 and ® = tan~! (¥). The joint
density function fz¢(Z, ®@) is computed as follows.
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‘We know,
_ fxv(x,y) Sxy (x,y)
fZ@(Z, q)) = mﬂ[ (Xl,yl) + W at (X2,y2)
dx dx dx dx
dgl dz dgl dz
dy dy dy dy
Sxy(x,y)
+"'mat (xn,yn)
dx dx
dg1 dg2
dy dy

Where Z = gl(X,Y) and ® = g2(X,Y) and (x1,y1), (x2,y2), ... (xn,yn) are
the solutions obtained by solving the equations g1(x,y) and g2(x,y) for the constant
‘2’ and ‘®’.

In our case, gI(X,Y) = Z = VX2 + Y2 and 22(X.Y) = ® = tan"! (%).
Solving for X and Y for the fixed Z and @ gives X1 = Zcos® and YI =

Zsin®@(x1, yl) = (Zcos®, Zsin®)

dgl X Zcos®

% = W at (x1,yl) = (Zcos®, Zsind) = O — cosd

dgl Y Zsind

% = W at (x1,yl) = (Zcos®, Zsind) = T —sine
Y

dg2 _ <_F)

-Y
ax = t (x1,y1) =(Z @, Zsin®
ax 1+ /X)2 X2+47Y2 at (x1,yl) = (Zcos sin®d)

—ZSin®d _ —Sin®

Z2 Z
dg2 L X . cos®
5 = +((§3X)2 = Yray2 at(x1,y1) = (Zcos®, Zsin®) = ~
dgl dg2 —Sin®

dx W cosd

Z
= = =1/|Z|
@
dgl dg2| | 5
dy dy
Thus fze(z, ®) = L&) 1, yl) = (Zcos®, Zsin®
zo(z, ) Gl gy at (x1,y1) = (Zcos®, Zsin®)
& &
dy dy

= fze(z, ®) = |Z| fxy (Zcos®, Zsin®)
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—(x2+y2)
Suppose if fxy (x,y) = 21-}02 e 22 where —oo < x,y < 00.

= fze(z,®) = e202  where Z > 0and 0 < ® < 211

= 0, Otherwise

Example 2.10. The random variable X and Y are independent and identically dis-
tributed random variables. Let Z = +/ X2 + Y2 and W = X/Y. The joint density
function

fzw(Z, W) is computed as follows.

We know,
_ Jxr(x,y) Sxy (x,y)
fZW(Z,W) = Wdt (xl,yl)—l—wat (X2,y2)

dx dx dx dx
dgl dg2 dgl dg2
dy dy dy dy

Sxy(x,y)

+"'mat (xn,yn)

dx dx

dsl dg2

dy dy

Where Z = gl(X,Y) and W = g2(X,Y) and (x1,y1), (x2,y2),...(xn,yn) are the
solutions obtained by solving the equations g1(x,y) and g2(x,y) for the constant ‘Z’
and ‘W’.

Inourcase, gl(X,Y) =Z=+vX2+Y2and 22(X,Y) =W =Y/X.

Solving for X and Y for the fixed Z and W gives the following set of solutions

Z=vVX24+Y2=3Z2=X24Y2=X24+(XW)2=X>(1+W?
= X*2=Z%/(1+W?
= X=+Z/V1+W?2orX = —-7Z/+/1+ W2 and the corresponding

values for Y are

Y = +ZW/V1+W2o0rY = —ZW/+/'1 + W2 respectively.

Therefore the solutions are (Z/ NI+ W2, 4+7ZW/ /1 + W2) and (=Z/~/1 + W2,
—ZW/1 + W?)

dgt X _ > ;
WX = Ty D = (+Z/\/1+W +ZW/ I+ W )

= 1/V1+ w2



96 2 Probability

dgl X ( Z )

== at(x2,y2) = | ——, - ZW/V 1 + W2

e e (x2.y2) T /
1

14+ Ww?

dgt Y _ > ;
WY = Ty D = (+Z/\/1+W W/ I+ W )

=W/V1+ W2
el _ Y (x2,y2) = (—L —ZW/V1 + W2)

Yy — JX?2+7Y? VI+w?
=—W/V1+ W2
dg2 -Y
%z?at(xl,yl)z<+Z/\/1+W2,+ZW/\/1—|—W2>
W+ W2
B Z
dg2 _ Y z W1+ W?
- a2y = [——— —ZW/ VI + W2 | = ———
Ix = xz @ (x2.y2) ( e /V1+ ) + =
dg2 _ 1 z VT W2
=22 = —ar (xl,yl) = IW/ V1 W2 ) =+
7y = x @ &LyD (—1+W2 /V1+ ) +—
dg2 1 z T+ W2
= - —ar(x2,y2) = ———— . - ZW/ V1 + W2 ) = -
=t (22 = (~ e 2w V14 W) -
Jacobian at (x1,yl) = VMR lZJFW2 _|(1+W2)|
’ —W/STH Wz Z|
. —1/N1T+ W2 —W/J1+ W2 |1+ W?)]
Jacobian at (x2,y2) = W«/IZJrW B «/IEWZ = 7]
|Z]
W) = o
Jow(z,w) ESTE]
z
fyy | ———.ZW \/1+W2)
XY(W /
S ()
+—fxy [ ————. —ZW/ V1 + W2
a7
e (o (G 29T
= W) = f JZW/NVT W2
farten = ey o \ g 2
-Z
= SNE)
o\ e Y

(z/ T+ W2, 42w/ T+ W2)
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Suppose if fxy (x, y) = se~ > +¥)/2

2171
= fzw(zw) = TN JFZV'VZ)| %e—((2)2+(ZW)2)/2(1+W2)
lzl 1 2
= fZW(Z,W) = mﬁe 2 forzZOand —o0o<W<x

Given W =Y/X—00 < X <ocoand —oco <Y < oo and hence —oco < W < oo

Example 2.11. Let X is a uniformly distributed random variable over the interval
[0 1]. Y is the random variable related with the random variable X as Y = g(X).
The invertible function ‘g(.)’ is related with the distribution function Fy (y) is as
given below.

PY <y)=PEX)<y)=PX<g'(»)=Fx(g ')

Note that g(.) must be the invertible function.
Also we know

Fx(x) = x as X is uniformly distributed over the interval [0 1]
=S PY <y =F»=¢"'1
= Fr()=¢""0)

For instance if fy (y) = (e_ﬁ‘y‘)/«/i, then g (.) is obtained as follows.
E _ e—V2lI

or fr(y) = =5~
Fy (y) is computed as follows.

Y o—V2Dl
Ao = | S

Case l: If y <0

Y oV2y

dy

Case2:If y >0

0 V2 Y o2y
[,
0

Fy(y) = . Wdy + NG
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e

gy = =x = v2y/2 =In(x)

2
=y= V2In(x) fory <0
eV2y
Similarly fory >0,g7'(y) =1- =

= y = In(2(1 —x))/\/i fory >0

Thus the function y = g(x) = «/Eln(x) for05<x<1

= In(2(1 — x))/~/2 for 0 <x
<05

Example 2.12. Let Z = max(X,Y) and W = min(X, Y), where, X and Y are arbi-
trary random variables. The joint density function fzw(z, w) is computed in terms
of fxy(x, y) is as follows.

Whenz > w,P(Z <z, W <w)=P(X <z,Y <w)+ P(X <w,Y <2
—P(X <w,Y <w) (See Fig.2.20 given below)

W, 2) Z 2)

oq%éﬁ/ o

$§§§§%%
4???%?*
CRRARHKS

Fig. 2.20 Computation of the joint density function of the 2.12
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= Fzw(z,w) = Fxy(z,w) + Fxy(w.z) — Fxy(w,w) forz>w
= 0, Otherwise

= fzw(z,w) = fxy(z,w) + fxy(W,2) — fxy(w,w) forz>w
= 0, Otherwise

For instance if X and Y are independent and identically distributed and is uni-
formly distributed between 0 and 4, then

1
Jzw(z,w) = Eforzzw,z,w=0104

= 0, Otherwise

2.23 Expectations

Expectation of the random variable ‘X’ represented as E(X) is defined as follows:

E(X) = / *fx (@)

Properties:

1. E@(X) = [, g(x) fx (x)dx

2. Exjy=y =EX/Y =y) = [Z 5 x/y=y(x)
3. EX) = Ey(Ex/y=y)

4. If X > 0 then E(X) > 0

5. E(X?] = E[[X — E(X)]?] + E[X]?

2.24 Indicator

(a) Markov inequality (Fig.2.21)
Consider X/b > I (X)
X
= £ (%) = £ )

:E(%)zP(Xzb)

= p(x > b) < £X)
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Fig. 2.21 Indicator

x/b

I5(x)

(b) Chebyshev inequality
Consider the random variable X = Y2
Using Markov inequality

P(Y? > b) < E(Y?)/b?

= P(|Y|>=b) < E(Y?)/b?

= P(|Y — E(Y)| = b) <E(|Y — E(Y)|*)/b?
= P(|Y —E(Y)| = b) <02/b*

(c) Schwarz inequality

Consider E ((aX —Y)?) > 0
= a’E(X?>)+ E(Y?) —2aE(XY) >0
= a’E(X?) —2aE(XY)+ E(Y?) >0

The above equation can be viewed as the quadratic equation with variable ‘a’
The equation is valid only when 4(E(XY))? —4E(X?)E(Y?) <0

= (E(XY))*> < E(X?)E(Y?)
(d) Chernoff bound (Fig.2.22)

Consider X7 > [,(x)
= E(* ™) = El,(x))
= E@E* %) > P(X > b)
= P(X >a) < e SE(¥)

(e) Also it can be shown E[XY] < 0.5(E(X?) 4+ E(Y?)) as follows

E(X-Y)*) =0
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esx-as

la(x)

_-—ﬁ-'--/

Fig. 2.22 Chernoff bound

= E(X*) + E(Y?) —2E(XY)
= E[XY] < 0.5 (E(X?) + E(Y?))

(f) Correlation co-efficient
From Cauchy-Schwarz inequality (E(XY))? < E(X?)E(Y?)

. (E(XY))?
The rat1om <1

E (X —mx)(Y —my))
VEX —mx))E((Y —my)?)

Define the ratio p =

The ratio p is called correlation co-efficient. The range of p is given as
0=<lpl =1

2.25 Moment Generating Function

The moment generating function is defined as @x (s) = E(e*¥)

Also it is known that E(e’X) = E (1 + (SX) + (SX)Z +..

Therefore differentiating ‘n-times’ the moment generating function @ (s) and
equating s = 0 gives the E(X").

Thus E(X") = 2x@ 5 — ¢
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2.26 Characteristic Function

The characteristic function of the random variable X is given as E(e/*X).
E(X™) can also be obtained using characteristic function.

2.27 Multiple Random Variable (Random Vectors)

Collections of random variables are called random vectors. The random vectors
X1

X2
represented as X =
Xn
Joint Cumulative distribution function
Fx(x1,x2,x3,...xn) = pr(X1 <x1,X2,<x2,X3 <x3,...Xn < xn)
Probability mass function of the random vector is represented as follows.
pr( X1 =x1,X2=x2,X3=x3,...Xn = xn)

Probability density function of teh

8”
dx10x20x3...0x

fx(x1,x2,x3,...xn) = Fx (x1,x2,x3,...xn)
X a4
Similarly
Fx(x1,x2,x3,...xn) =

///.../fi(xl,XZ,xI%,...xn) 0x10x20x3...0xn

Marginal density function

Sx (x1,x2,..x({—1),x(@ +1)x(@)...xn)
pun=[ [ [
0x10x2...0x(i—1)dx (i +1),...0xn
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Joint density function

leXZ(xl,xz)=[[[...[fx(xx(i,’)xjii”_l'_);gi.i;)n) 9x30x4 ... dxn

Conditional probability density function
Consider the random vector X is divided into two random vectors X1 and X2 as

shown below.
X1
X =|"=
%=

Then the conditional probability of the random vector X1 over the random vector
X2 is computed as follows

fx1/x2(x1) = fx (x)/Tx2(x2)

Also note that
fx (x) = fx1/x2(xDfx2(x2)

In General,

fx(x) = fx1(x1) fx2/x1(x2) fx3/x1,x2(x3) ... fxn/xn—1..x1(xn)

Independence
The random variables of the random vectors X1,X2,X3,...Xn are independent if

Fx (x1,x2,x3,...xn) = Fx1(x1)Fx2(x2) Fx3(x3) ... Fxn(xn)
Jx (x1,x2,x3,...xn) = fx1(x1) fx2(x2) fx3(x3) ... fxn(xn)

Expectation of the random vector

E(X1)
E(X2)

E(Y) =

Moment generating function of the random vector

E(eiTX)
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Where
X1 sl
X2 52
X=. S =
Xn sn

Characteristic function of the random vector

E(ej—wrl)
where
X1 wl
X2 w2
X = W =
Xn wn

Correlation matrix of the random vector

EX X" =
E(X1%?) E(X1X2) E(X1X3)...E(X1Xn)
E(X2X1) E(X2%) E(X2X3)...E(X2Xn)

E(XﬁXl) E(Xﬁxz) E(X;1X3) E(knz)

Covariance matrix of the random vector

E((X - EQOX - E()T)
=EX X")-EX)EX)"

Note:

1. The events Xi and X]j are statistically uncorrelated if E(Xi Xj)—E(Xi)E(Xj) = 0,
i # j. Also note that the co-variance matrix becomes diagonal matrix if the
elements of the random vector are uncorrelated to each other.

2. The events Xi and Xj are independent then E(XiXj) = E(Xi)E(Xj).

3. If the two events are statistically independent, they are uncorrelated. But the vice-
versa is not true.
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Gaussian probability density function with mean ‘i’ and variance ‘02’
f ( ) 1 _[x—u;]2
x(x) = e 20
/21102
Fx(x) = P(X =x)
Suppose y? = [X;Z“]z

—00 2H02
[x—n]
[7 i
= e
—00 2HO’2
[x—=p]
[7 gt
= e
—00 2H02
[x—p]
5] 1 2
= —e_yz dy
—00 211

Thus Gaussian distribution value at ‘x’ with mean = L, variance = 02 can be
computed using Gaussian distribution function of y at [Xo;”] whose mean = 0 and
variance = ¢2

Moment generating function of the Gaussian density function

oo SX _ [X—LL]Z

By (s) = E(e™¥] = /_ s

Consider the powers of e.

sx20% — x2 — p? + 2ux
202
_ (x2 +uZ—Qu+ 2s02)x)

202

Adding (i + s02)? and subtracting (ju + s02)? on the numerator, we get the
following

(X242 = (2p 4250 x + (L + 50%)% — (L + 502)?
- )
B (x — (2p + 2502))2 + p? — (p + 502)?
- )
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2 242
—(u+s0%) 2
[ee) e_UL 502 (x—(2|L+2s02))
:>/ — ¢ 202 dx

—00 v 2H02

2.2
=M™

B (x—(2u+2sc72))2

® e 202
Because, —  dx =1
—00 \/21_[02
oD
Ex] = 22x6) o
as
"Dy (s)
E[ X" = ———|s=0
) = S22
5252

Dy (s) = e 2

Consider the case when . = 0.

0252
Ox(s)=e 2
142 N2/ 27 L
=14+ 1 + o +....+ ] +
aqu)X(S) og2m

Therefore E[X"] = ¢"[1.3.5.7....(n — 1)] when n is even

= 0 when n is odd

Chernoff bound for Gaussian density function with zero mean and unity
variance

The Chernoff bound is given as P(X > a) < e S E(e’X) (i.e) P(X > a) <
e Sdy(s)

2.2
For Gaussian density function ®x (s) = e*’e 3
S 0'252
= P(X >a)<e®eMe 2 foralls

2.2
To get the tight bound we have to find the value of ‘s’ so that e *SeMSe "3 s
minimized.

Assume v = 0 and variance 6% = 1 for simplicity.
242
Differentiating e *Se 2~ with respect to s and equate to zero

622 2 2.2
e Se™3 (%(m)) +e°2s e ®S(—a) = 0

s = (a/o?) =a
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2 2
s —-a
—a$ 5

Substituting s = aine *e 2 we get, e

—g2
= PX>a)<e 2

2.28 Gaussian Random Vector with Mean Vector | x
and Covariance Matrix Cy

fﬂ@=755%ggf(é)ﬂl—&dTC‘ﬂi‘&ﬂ)

Moment Generating function for the Gaussian random variable is given as
Dy (S) = elx17s , 31T CS)

Properties of Gaussian random vector

E(X1)
E(X2)
I E(X) = = nx
E(Xn)
d®x (s)
2. E(X;) = —— =0
(Xi) dSi s
dz@x(s)
3. E(X%)= —=2|s=0
(x:%) sz |~
d*o
4. E(X; X)) = d"x(s) s=0
ds;S;
damtro (S)
5. In general E (X;" X ;") = W s=0

6. The correlation matrix of the Gaussian random vector is given as

R=EX X") =
E(X1?) E(X1X2) E(X1X3)... E(X1Xn)
E(X2X1) E(X2?) E(X2X3)...E(X2Xn)

E(XﬁXl) E(X;1X2) E(X;1X3) E()‘(nz)
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7. The co-variance matrix is obtained as
C =E((X-EW X-EX))
=EX X") - EX)EX)"

8. Marginal density of any £-dimensional sub vector of X (£ < n) is also Gaussian
with proper mean and co-variance matrix as described below

X1
X3
X
Consider the Gaussian random vector X = Xj
Xit2
X143
Xn
mi
my
mj
With mean vector m = mjq
miy2
mp43
Mp
And the covariance matrix given as
C11 C12...€C1] ...C1n
€21 C22 ...C2] ...C2p

Cip1 Clp ...C11 ... Clp
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Cl+1,1 C141,2 - - - Cl41,0 - - - Cl+1,n

Cn1 Ch2 ... Cpl ... Cun

Let the sub vector of the above mentioned Gaussian vector be

X
X>

[~
I

X

The random vector Y is also Gaussian distributed with mean vector

mp
my
my =
mj
and co-variance matrix

11 C12 . . . C1]
C21 C22 . . . Cg]
¢y Ci2 . . . (]

9. If the Gaussian random vector X with mean vector M and co-variance matrix
‘Cyx’ is linearly transformed into the random vector ¥ using the transformation
matrix ‘A’ and the column vector b as

Y=AX+b

Then the random vector Y is also Gaussian distributed with mean vector

A M + b and the co-variance matrix A Cx AT

Note that the co-variance matrix of the random variable ¥ is A Cx AT irre-
spective of the distribution function. Similarly the mean vector of the random
variable Y is A M + b irrespective of the type of the distribution function.
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10. Consider the random vector X is represented as row concatenation of two
random vectors X1 and X2 as shown below

X1

X=\|_2

X2
Similarly the mean vector the random vector X is represented as row concate-
nation of the mean vectors of the random vectors X1 and X2 as shown below.

=)

Also let the co-variance matrix of the random vector X1 and X2 are represented
as Cp; and Cy; respectively. The co-variance matrix of the random vector X is

represented as
[Ci1] [Cr2]
[Ca1] [Cao]

(a) The conditional density function fx,/xi=xi(x2) is also Gaussian with mean
vector M2 + [C21][C11]7 [X1 — M1] and co-variance matrix C = [Cas] —
[C21][C11] 7 [Cr2]

(b) The conditional density function fx/x>=x2(x1) is also Gaussian with mean
vector M1 + [C12][C22]7 ' [X2 — M 2] and co-variance matrix C = [C;] —
[C12][C22] 7 [Cai]

11. If the co-variance matrix of the Gaussian random vector is diagonal, the ele-
ments in the random vector X are uncorrelated and independent
12. Contours of 2D-Gaussian probability density function (Fig.2.23)

x2  y2  2pxy
—_ - _I_ = __ - 7
012 0?2 010,
1 2
fxy (x, ) = ——————¢ 2(1—p?)
2[1o102+/1 — p2

Consider the 2D contour obtained from the equation

x2  y2  2pxy
. _

— 4+ — = constant = cl
0102

o1 052

This is the contour having the same probability density value.
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rho=0 sigma1=1 sigma2=1

7 T 10 —= ——
st/ [ o 8
{ \
6 - v 6 —— —
| [ \ - .
4 i | 4 Z - = 1
2 || \ 2 1
0 | [ V]
l ‘ 0 A
-2 | | .JI | 2} A
4 I |!I I'.I II a4t ~—_ - A
-6 -6+ L FA | 6 = R 1
-8 R -8 K N -8 |
~10 ¢ o bt h X / ' S X e 1
10 -5 0 5 10 210 -5 0 5 10 1910 5 0 5 10
10 rho=1/2 sigmai=1 sigma2=1 rho=1/2 sigmai=1 sigma2=2 rho= —1/2 sigma1=1 sigma2=1
- 10 7 :
ol = ] 10 -
e ] 8l \ 8 R
6 2 '-.1 6 | 6 I/' ™,
| [
4 .Il 4 1 al | N
2t/ / 2 2f | X
of f ' ot/ [ | of
/ { \ \_ b
-2 .'f / ) ,I | ol \ ll
—4 | s -4 | / -4 |
6} |\ -6 4 -6 k /
\ - / /
N W\ S o
-10 ~10 L o /
0 5 0 5 10 0 -5 o 5 10 %% 5 o s
10 rho= —1/2 sigmai=1 sigma2=2
o T
1
6
4 | \ 1
2
0 4 b\
2 0
4 | d
—6 'I
gL 1
. \ |
Jols ) : 4 l
-10-8 6 4 -2 0 2 4 6 8 10
Case 1: p=0,01 =02
y
X

rho=0 sigmai=1 sigma2=2

rho=0 sigma1=2 sigma2=1

Fig. 2.23 Contours of the 2D Gaussian probability density function

111
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Note that when the contour radius increases, actual magnitude of the pdf decreases.
Thus contour c1 is having higher magnitude compared with the contour c2.

Case2: p = 0,01 =02
/‘\m> 02
\\/ X

[
\

y

Case 3: p = 0,02 = 01

Gy <0y

\"
/

Case 4: p < 0,0, = 07. Note that the value of ® = 45°

Fig. 2.23 (continued)
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Case 5: p > 0,0, = 07. Note that the value of ® = 45°

S

Case 6: p # 0,0, # 01, Note that the value of ® # 45°

b

)<

Fig. 2.23 (continued)

Example 2.13. Let X be a uniform random variable in [0,100]. E(X/X > 65) is
computed as follows.

100
EX/X 269 = [ x fuysestod
0
Jfx/x>65 is obtained as follows

Fx/xs65(x) = P(X <x,X >65)/P(X > 65)
= P(65<X <x)/P(X = 65)
= (Fx(x) — Fx(65))/P(X = 65)
= (Fx(x) — Fx(65))/P(X = 65)
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Differentiating on both sides,

= fx/x265(x) = fx(x)/P(X > 65) for X > 65

100
S fryxses(0) = fx(x) / [6 _ fews
100
s fxmes () = fx (o) / [6 o Sr@a
fx(d) = ﬁ for 0 < x < 100 (Uniformly distributed)
100
= frxses() = fx () / /6 (/100

= (1/100)/(%) (35)

1
—gfoer65andX§100

100
— E(X/X > 65) = [ X fixses(x)dx
65
100 1
= / X (—) dx
65 35
1 100
= (—)/ x dx
35 65

_ (35) (100> —65%) 16535

2 T 35%2
=825

Example 2.14. Let X be a poison random variable with probability mass function

—A 2k

A
Py(k) = = fork=0.1.2....

E(X) and variance(X) are computed as follows
The moment generating function

e
x=0 x!

oo —Arx
x(s) = EeX) =37 os7C 2

B i (eSA)Xe*
- = x!

N 51)2 51)3
o (e?X) (e”A) (e’ A)

=e |:1+ 0 + 2 + 3 +oe
— o)
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Differentiating on both sides with respect to ‘s’ and substitute s = 0 gives
(€S
ds

E(X) = e (at s =0) = e @ MeS (ar s =0) = A

. o s . . .
Differentiating e ™* €~ *) LeS with respect to ‘s’ and substitute s = 0 gives

E(X?) = Ae ™t [ese(es’l)kes + e(es'l)es] (at s =0)= A2+ 1)

= Variance = [E(X?) —E(X)?*] = A
Mean = A

Variance = A

Example 2.15. Consider the random variable X with probability density function as
given below.

fx(x) = Ae™* for x>0
= 0, otherwise

E(X), fx(x/X > 2)and E(X/X > 2) are computed as shown below.

oo

(e ) (e )
EX) = / x fx(x)dx = / x de Mdx = )L[ x e Mdx
0

—0o0 0

e—/\x o ooe—/\x
==A|:x|: —~ L —/0 —~ dx:| = A[1/A3] = 1/A

Fx(x/X>22)=P(X =x/X>22)=P(X =x,X >22)/P(X =2)
=PX <x,X=2)/P(X =2

PQ2<X <x)
 P(X>2)
_ Fx(x) - Fx(2)
T P(X>2)
ifx(x/XEZ)z%forXEZ

= 0, otherwise

o) 0o Ae—lx
P(X >2) = [ fx(x)dx = / e M dx = 00 = —e M = 72
2 2 —A 2

= fx(x/X >2)=re*e? forx>2

= 0, otherwise
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oo

EX/X >2) =/ xfx(x/X =2)dx =

o) [ele) e—)Lx
/ xhe M dx = AeZA/ xd
2 2 -1

—Ax ] oo ,—Ax
— L2 |:x [e 5 ] - / ¢ : dx:| = Ae? [(2e—“/x) +e—”/xz)]
N R -

=2+ (1/1)

Example 2.16. Let X = [X1 X2 X3] is a three-dimensional zero-mean Gaussian
random vector with covariance matrix C given by

1 30
C=323
0 31

The joint density function fxjx2x3(x1, x2, x3) is given as follows

Sxixax3(x1,x2,x3) = fx(x)
1 (1 T
= —— e (5 ) ([x—nx] ' [x-nx]
@ms|c|z \2 — —
where X = [x1 x2 x3]7,|c| = 16, n = 3, hx = [000]7 and
7 3 -9
C'=1[3-13 *(L)
-9 3 7 16

= fxix2x3(x1,x2,x3)

1 ! 7 3 -9
:fle_(—) x1x2x3]| 3 =1 3
@36 \2 T3 a
()] 2
| — X
16 x3
= fxix2x3(x1,x2,x3)
1 1
- : 1e_(—)(7x12_x22+7x32+6x1x2
(2I1)2116|2 32

+6 x2 x3 — 18x1 x3]

IfY = X1+4+X2+X3, then fy(y) is Gaussian with mean my and covariance matrix
Cy as shown below
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x1
Y=[111]]|x2 Y = AX, where A =[111]
x3

1

1 30
The covariance matrix Cy = A Cx AT = 11113 2 3 1] =16
0 3 1 1

Mean vectormy = Amy = Apx = [11 1000]" =0

1 12

Thus fy(y) = Al

Example 2.17. Let [X1 X2]T be the two-dimensional zero-mean Gaussian random
42
24
tions fx1/x2(x1) and fx2,x1(x2) are also Gaussian distributed with the following
specifications.

vector with covariance matrix C given by C = j| The conditional density func-

(1) fx2/x1(x2) is Gaussian with mean = m2 — c21 cl 17Y(x1 — m1) and vari-
ance = ¢22 — ¢21 cl17tc12, where [m1 m2]T is the mean vector of the
two-dimensional Gaussian random vector in general. Also C = cll cl2

c2l ¢22

be the corresponding generalized co-variance matrix.

Inourcaseml =0andm2 =0.cll =4cl2=2c21 =2c22 =4

There fore fx»/x1(x2) is Gaussian distributed with mean = (—2)x1 and
variance = 4 — (%) *2=23

1 [x2+%x1]2
=1

V1T % 6
(ii) fx1/x2(x1) is Gaussian with mean = ml — c12 c2271(x2 — ml) and vari-

ance = cll1 — c12 ¢227'¢21, where [ml m2]T is the mean vector of the
cll 012:|

Sx2/x1(x2) =

two-dimensional Gaussian random vector in general. Also C =
c21 ¢22

be the corresponding generalized co-variance matrix.

Inourcaseml =0andm2 =0.cll =4cl2=2c21 =2c22 =4

There fore fx»;x1(x2) is Gaussian distributed with mean = (—%) x1 and vari-
ance = 4—(%) *2=23

I [r2+bi]”
patda]®

Sx2/x1(x2) = me_
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Example 2.18. Let X1 and X2 are jointly Gaussian with zero-mean. Let the

co-variance matrix of the random vector [X1 X2] is given as C = |:1 ﬂ Let
P

Y1 = X1 + X2, Y2 = X1 — X2, then the co-variance matrix of the random vector

[Y1Y2]is given as

B rTU 11 o1 1] _[20+p) O
e I | O e

This implies the random variable Y1 and Y2 are uncorrelated. As the distribu-
tion is Gaussian, this also implies that the two random variables Y1 and Y2 are
independent.

2
Similarly, for the case of co-variance matrix C = ol p 6122 and
polo21l o2

Y1 = % + % Y2 = %—% the co-variance matrix Cy = ACx A7 is computed

as following

/ol 1/02 o012 polo2][1/ol 1/ol
|:1/01 —1/02] |:p0102 022 ][1/02 —1/02i|

_ [01 + pol a2+p02j| |:1/al 1/o1 ] _ |:2(1 +p) 0 j|

ol —pol po?—o02]||1/02 —1/02]| 0 2(1 —p)

This implies the random variable Y1 and Y2 are uncorrelated. As the distribu-
tion is Gaussian, this also implies that the two random variables Y1 and Y2 are
independent.

2.29 Complex Random Variables

Consider the probability space (S,F,P), then the mapping of the outcome s € sample
space S to the complex line is called complex random variable (Fig. 2.24).
The complex random variable ‘X’ is represented as X, + j X;

E(X) = E(X;) +j E(X))

The joint pdf of ‘X’ and ‘X;’ is represented as fx, x; (x;, X;), which is the joint
density function of the random variable ‘X,’ and ‘X;’.

E(2(X)) = E@e(X,)) +j E(g(X)))

The complex random variable X = X, 4 j X; is defined as proper complex random
variable if it satisfies the following condition.
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Fig. 2.24 Illustration of the (S,F,P)
Complex random variables

(C,B,Px)

E(X?) =0
E(X?) = E (X, + j X)X, + ] Xi)) = E(Xr® = Xi?) + 2jE(XiXr)
= EXr*)—EXi*)=0
(i.e) E(Xr?) = E(Xi?)
Also, E(Xi Xr)=0
(i.e.) The random variable X, and X; are uncorrelated
The second moment of the random variables ‘X,’ and ‘X;’ are zero.
It can also be shown that for the proper complex random variable, variance of the
random variables ‘X’ and ‘X;’ are equal and they are uncorrelated.

E ((X — E(X))?) is called pseudo covariance. The co-variance for the complex
random variable ‘X’ is defined as E(X-E(X)) (X — E(X))H)

2.30 Sequence of the Number and Its Convergence
Let the sequence of random variables be represented as x1x2x3 ..., then the se-
quence converges to the constant x is represented as follows

lim x, = x
n—>0o0o

For example (1 + %) , (1 + %) , (1 + %) .. (1 + %) is the sequence of random
variables.
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. 1
lim {1+ -] =1
n—o00 n

Iim x, = x
n—oo

Definition for convergence:

= For any €> 0, there exists N, such that |x,, — x| <€ foralln > N

2.31 Sequence of Functions and Its Convergence

Let the sequence of functions be represented as f(£)f,(¢)f3(f) ... f, (&), then the
function converges to the function f(t) is represented as follows

e Point wise convergence lim,, oo f5(¢) = f(¢) forall ‘t’

e Weeker convergence lim,_, o, f,(¢) = f(¢) for all t except at certain discrete
time instants #11>13 ...,

e Mean square convergence
The sequence of functions converges to the function f(t) if it satisfies the follow-
ing condition

lim / Z ) = fOPdt = 0

This can be interpreted as the sequence of numbers and they converge to the con-
stant 0.

Example: The Fourier series representation of the periodic signal converges in
mean square sense.

(i.e.) The function f,(¢) = llzz’in cre”/¥2xpixksf 0%t converges to the function
f(t) in mean square sense.

2.32 Sequence of Random Variable

Random variable is the function of mapping of the outcomes of the experiment
(i.e.) events’s € the sample space S to the real line. Hence it comes under sequence
of functions.

The sequence of functions X (s)X2(s)X3(s) ... X,(s) converges to the func-
tion X(s) (Another random variable) as follows

e Point wise convergence
limy, 00 X, (s) = X(s) forall s
e Almost sure convergence
lim, 00 X, (s) = X(s) for all s € 2, where Q is the field (i.e.) p(R) = 1
e Mean square convergence
lim X,(s) = X(s)
n—>o0
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If lim E((Xa(s) = X(5))?) =0

Note that E((X1(s) — X(5))?), E((X2(s) = X(5))?), E((X3(5) — X(5))?),...
E((Xn(s)—X(s))?) can be viewed as the sequence of numbers and they converge
to the constant 0.

e Convergence in probability
limy 00 X5 (s) = X(s) in probability sense if the sequence of numbers
P(| X, — X| >¢€) converges to the value 0 (i.e.) lim,—c P(| X, — X| >€) =0
forany > 0

e Convergence in distribution
lim, 00 Xn(s) = X(s) in distribution sense if distribution function Fy,(«x) =
Fx (o) for all values of ‘@’ where Fx («) is continuous.

Properties of the different types of convergence

1. If the sequence of random variable converges in mean square sense then they will
converge in probability sense (Fig.2.25)

E((X, — X)?
P((X, — X z) z L H 2T
Proof. 1f the sequence of random variable converges in the mean square sense,

E((X, — X)?) = 0 = P((|X, — X| >€) < 0. Probability cannot be less than
zero and hence P((|X,, — X| =€) = 0 and hence proved

2. If the sequence of random variable converges in almost sure sense then they will
converge in probability sense. (Obvious from the definition)

3. If the sequence of random variable converges in probability sense then they will
converge in distribution sense and hence

Fig. 2.25 Convergence

of the Sequence of random
variables

1. Strictly convergence

2. Convergence in distribution
3. Convergence in probability
4. Convergence in mean
square sense

5. Convergence in almost sure
sense
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e If the sequence of random variable converges in mean square sense then they
will converge in distribution sense.

e If the sequence of random variable converges in almost sure sense then they
will converge in distribution sense.

2.33 Example for the Sequence of Random Variable

Suppose X; X5 ... is the sequence of random variable such that E(X;) = k for all
i, E(X; — k)?) is finite for all i and the covariance E((X; — k)(X; — k)) = 0 for
i # j, then the sequence of random variable defined as Y1Y,Y3 ... Y}, converges
to the constant ‘k’ in mean square sense.

Where Y, = (2) > %—; Xi.

2.34 Central Limit Theorem

If we have independent and identically distributed random variables X; X» ... with

mean ‘m’ and variance less than infinity, then the sequence of random variable

(\/L;l) Y '_1(X; — m) converges to the random variable X in distribution sense

such that the random variable ‘X’ is having Gaussian probability density function
with mean zero and constant variance.



Chapter 3
Random Process

3.1 Introduction

The mapping of the experimental outcomes s € sample space S to the set of Random
vectors is called as random process (Fig. 3.1). Individual random vector can be
treated as the signal which varies as the function of time. (i.e.) Thus the random
process can also be viewed as the mapping of the outcomes s € sample space S to
the set of signals as the function of time.

Example 3.1. An experiment has four equally likely outcomes 0,1,2,3 (i.e.) S =
{0, 1,2, 3}. The random process X; is defined as X; = cos(2 = PI * s x t) for all
seS.

In the above example, the outcome of the experiment ‘0’ is mapped to the random
vector

[fT111111111...1]

Similarly the outcome of the experiment ‘1°, 2°, ‘3” are mapped to the set of
random vectors as shown below. [Note that resolution of the variable ‘t’ is 1/1,000]

1>

[1.0000 1.0000 0.9999 0.9998 0.9997 0.9995 0.9993 0.9990 0.9987 0.9984. ..

27>

[1.0000 0.9999 0.9997 0.9993 0.9987 0.9980 0.9972 0.9961 0.9950 0.9936 . . .]

3-> [1.0000 0.9998 0.9993 0.9984 0.9972 0.9956 0.9936 0.9913 0.9887
0.9856...]

The mapped vectors are plotted as the function of time which are shown in the
Fig. 3.1. Thus the random process can be viewed as the mapping of the outcomes of
the experiment to the set of signals as the function of time.

E.S. Gopi, Mathematical Summary for Digital Signal Processing 123
Applications with Matlab, DOI 10.1007/978-90-481-3747-3_3,
(© Springer Science+Business Media B.V. 2010
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o = N

0 01 02 03 04 05 06 07 08 09 1

_ O =

0 01 02 03 04 05 06 07 08 09 1

53=‘2’>

_ O =

0 01 02 03 04 05 06 07 08 09 1

o =

S4=\3’>

Fig. 3.1 Random process

i
o

01 02 03 04 05 06 07 08 09 1

3.2 Random Variable X,

The Random variable X;; is obtained by sampling across the random process
X; at particular time instant ‘t1’. In the previous example the random variable
Xo Xo.25 Xo.5 are obtained by sampling the random process across the time instant
‘0, ‘0.25°, ‘0.5’ respectively as shown in the Fig. 3.2.

The random variable X holds the values 0 with probability = 1

The random variable X¢.25 holds the values 1 with probability = 1/4
0 with probability = 1/2

—1 with probability = 1/4

The random variable X 5 holds the values 1 with probability = 1/2
—1 with probability = 1/2

3.3 Strictly Stationary Random Process with Order 1

Cumulative distribution function of the random variable X;14, = Cumulative dis-
tribution function of the random variable X;; for all values of 7. (i.e.) Fx1 () =
Fx;14: () forall .

3.4 Strictly Stationary Random Process with Order 2

Fxn,x(a, B) = Fxii4r, xe24<(a, B) forall 7, t1, 2, (e, B)

tends t . .
Ifg mer 00, order 1 stationarity holds
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X0.25
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Fig. 3.2 Random variable X,

In general if the random process is strictly stationary at order n, it is strictly
stationary for order n — 1.

Example 3.2.(a) X,: Functions of outcomes of tossing the coin. If the Probability
of Head is same for every toss, then the random process X, is strictly stationary
of order 1.
(b) Example 2.1 is the non-stationary random process.
(¢) X; = A cos(2*IT*f*t + ©), ‘©’ is the random variable independent of ‘t” and
is uniformly distributed between 0 to 2*IT. This is strictly stationary process.

3.5 Wide Sense Stationary Random Process

The Random process X; is said to be wide-sense stationary random process if it
satisfies the following conditions

e mx(t) = E(X;) = constant for all time instant ‘t’.
e E[X;X5) = Rx(t,s) is the function of t — s.

(i.e.) E[X: X5) = Rx(t,s) = Rx(t —s) = Rx(z) for all values of ‘t’ and ‘s’.
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Example 3.3. X; = A cos(Q*IT*f*t + ©), ‘©’ is uniformly distributed between 0
to 2*TI.

myx(t) = E(X;) = E(A cosQ*IT*f*t + ©)
= A E(cos(2*IT*f*t + ©)
(Note Expectation is computed at one particular time instant ‘t’ (i.e.) ‘t’ is fixed.
so the function cos(2* IT*f*t + ®) is the function of the random variable ‘®’ only.

(Represented as g(®)).

Let the probability density function of the random variable ‘®’ be represented as
f(®).
Therefore

A E(cos(2*IT*f*t + ©))
—A / ¢(©) £(©)dO

= A/ cos(2xIT*fxt + @) f(®) dO®

21
1
A/ cos(2xITxfxt + ©) —— d®
0 2% I1

A
2% I1
=0

211
/ cos(2xITxfxt + ©) dO
0

.. mx(t) is Constant
Also Autocorrelation is computed as follows

Rx(s,t) = Rx(t + t,t) = E(X;+:X¢)

= E(A E(cos(2*IT**(t + 1) + ®) A E(cos(2*TT**t + ©))
= E[A2 cosQ*IT*f*(t + 1) + ©) cos(2*[T*f*t + ©)]

A% E [cosQ*TT*f*(t 4 1) + ©) cos(2*IT*f*t + O)]

A2
=5 E[cos(2*IT*f* (2t + 1) + 20) + cos(2*I1*f*1)]

A? A?
=5 E[cos2*IT*f* (2t + 1) + 20)] + TE[cos(Z*H*f*r)]

Note that cos(2*IT*f*) is constant as t and f are constant

A? A?
So > Elcos(2*IT*f*7)] = > cos(2*IT*f*1)
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[ term

A72E[cos(2*H*f*(2t + 1) + 20)] = 0 [Refer the steps involved in calculating
mx (t)]

J.Rx(s,t) = Rx(t +1,5) = ATZ cos(2*IT*f*t) = Rx(s —t) = Rx(7) is the
function of the differenceu — s = 7.

Thus X; = Acos(2*IT*f*t + ©), where ‘©’ is the random variable which is
uniformly distributed between 0 to 2*IT is the wide sense stationary process.

3.6 Complex Random Process

The autocorrelation of the complex random process is given as
Rx(t,s) = B(X: X3).

If the Complex random process is Wide Sense Stationary process, then Ry (¢, s) =
E (X, X;) = Rx (t —s) = Rx(t) which is the function of differencet —s = 7

3.7 Properties of Real and Complex Random Process

1. Rx(0) = FE (X tz) for real random process
Rx (0) = E(]X;|?) for complex random process
2. Rx(t) = Rx(—r) for real random process
Rx (7) = R%(—7) for complex random process
Also Real [Rx (7)] = Real [Rx (—7)] (Even symmetry)
Imaginary [Ry (7)] = —Imaginary [Rx (—7)] (Odd symmetry)
3. |Rx ()| < Rx(0) for both real and complex random process
(i.e.) |E (Xt+rXr*)| < E(|X;|?) for complex random process
|E(X;+:X;)| < E (X?) for real random process

3.8 Joint Strictly Stationary of Two Random Process

Consider two random process ‘X;’ and ‘Y;’. They are said to be jointly strictly
stationary if it satisfies the following condition

Fxn,ym(a, B) = Fxiitr, viot<(, B) forall 7,t1,t2, (o, B).

Note that the two random process ‘X;’ and ‘Y;’ are individually stationary.
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3.9 Jointly Wide Sense Stationary of Two Random Process

Consider two random process ‘X;’ and ‘Y;’. They are said to be jointly Wide Sense
Stationary (W.S.S) if it satisfies the following condition

1. mx(t) = E(X;) = constant for all time instant ‘t’
2. E[X;X5) = Rx(t,s) is the function of t — s.

(i.e.) E[X: X5) = Rx(t,s) = Rx(t —s) = Rx(v) for all values of ‘t’ and ‘s’
3. my(t) = E(Y;) = constant for all time instant ‘t’
4. E[Y;Y;) = Ry (¢, s) is the function of t — s.

(i.e.) E[Y:Ys) = Ry(t,s) = Ry(t —s) = Ry (z) for all values of ‘t’ and ‘s’
5. E[X:Ys] = Rxy(t,s) = Rxy(t —s) = Rxy(t) for all values of ‘t” and ‘s’

Note

(a) E[X:Ys] = Rxy(t,s) is called as cross correlation function.

(b) Rxy(t,s) = Ryx(s,t) for real random process
Rxy(t) = Ryx(—7) for W.S.S. real random process

(¢) Rxy(t,s) = Ryy(s,t) for Complex random process Rxy(zr) = R}y (—7) for
W.S.S. Complex random process

3.10 Correlation Matrix of the Random Column Vector )}f’
for the Specific ‘t’ ‘s’

e([] e ) =Ly S0

t

3.11 Ergodic Process

Let ‘s1’, ‘s2’ ...‘sn’ be the outcomes of the experiment. Let X;(s1) be the signal
as the function of time which is the map of the experiment S1. Similarly X;(s2) be
the signal corresponding to the experiment S2. The set of functions as the outcomes
of all the experiments forms the random process which is represented as X; (see
Fig. 3.3). Also let X;; be the random variable which holds the values obtained by
collecting the values across the process at some arbitrary time instant ‘t1’.

Ensemble average of the random variable X is computed across the process and
is given by

/: Xfx, (x)dx

where fxq is the probability density function of the random variable ‘X;;’.
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t1

X
t1

Fig. 3.3 Illustrations of Ergodic process

Time average of the arbitrary mapped signal X;(s1) is computed as follows

(1Y (T
Th—l;noo (ﬁ) /;T Xt(Sl) dt

In case of Wide Sense Stationary process, the ensemble average E(X;1) is constant..
If the above mentioned Ensemble average (constant) is equal to the Time average
computed for any arbitrary mapped signal X, (s1) (say),the random process is called
Ergodic in mean.

(i.e.) The Random process X; is said to be Ergodic in mean if

1 T o0
lim7 0 (ﬁ)/ X(si) dt = / X fx,, (x)dx = constant for all ‘i’.

T —00

Note that Random process X; must be the W.S.S. process if it is Ergodic process.
Similarly the random process is said be Ergodic in Auto correlation if the random
process satisfies for the following condition. Let X; be the W.S.S process. Ensemble
average in auto correlation computation is given as

Ry(0) = BXereXo) = [ 30 fitson, (eo)dx dy

Time average in auto correlation computation is given as

(T
Th_)moo (ﬁ) /;T Xe(s1) Xr41(s1) dt
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If Ensemble average is equal to the time average in auto correction computation, the
random process is said to be Ergodic in autocorrelation. (i.e.) The random process
X; is said to be Ergodic in autocorrelation if

, WA ,
limy o0 (ﬁ)/_ Xt (si) Xy 4(si) dt

T

= // XY fX,qox, (X, y)dx dy = Rx () = function of ‘¢’ for all ‘1’

Example 3.4. X; = Acos(Q*IT*f*t + ®), ‘®’ is uniformly distributed between 0
to 2*I1.
One particular map corresponding to the experimental outcome S1 is given as

X;(s1) = A cos(2*IT*f*t + O(s1))

Ensemble average is given as E(X;) = 0 (see Example 3.3)
Time average

1 T
lim (= X, (s1
TLmoo(zT)/_T (1) dt

1 T
= limy_ oo (—) / A cosx*xIT*xfxt+ O(sl)) dt
2T ) J_r
1
= limy_ oo ((ﬁ) Asin2* ITxfx T+ O(s1))/(2 % I = f))

Asin2 % IT x fx T 4+ O(s1))/(2 = IT % f)) is bounded between two constants.
Say between ‘M1’ and ‘M2’.

(ie) lm7_oeo ((%) M1

IA

1
lim7 oo ((ﬁ) Asin*xITxfxT

+0(s1))/ (2 % IT % f))

1
i ((5) w2

1
lim7 o0 ((ﬁ) Asin2xITxfxT

IA

IA

1+ O(s1))/2* T * f)) <0
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1
= lim7_ oo ((ﬁ) AsinxITxfxT

+0(s1))/(2 % IT * f)) =0

. Ly ("
= llmT_)oo (ﬁ) /;T Xt(Sl) dt =0

Thus Ensemble average = Time average = constant = 0 and hence the random
process X; = Acos(2*IT*f*t + ®) (where ‘©’ is uniformly distributed between
0 to 2*IT) is Ergodic in mean. In the same manner, it can be shown that X, =
A cos(2*IT*f*t + ®) (where ‘©’ is uniformly distributed between 0 to 2*T1) is
Ergodic in autocorrelation as shown below.

Ensemble average in auto correlation is given as Ry(t) = E(X;4+:X;) =

ATZ cos(2*IT*f*t) (see Example 2.3)

Time average in auto correlation is computed as

: Ly (r
Th_r)noo (ﬁ) /_T X (s1) Xy 4(sl) dt

1 T
= lim7_ o0 (—) / Acos*xIT*fx*(t+ 1)+ O(s1))
2T ) J_r

xA cos(2x T xf*xt+ O(sl)) dt

= lim7 o0 (217") / (A2/2)[cos(2 * TT % f % (2t + 7) + 2 O(s1))
+cos(2x I * f* 7)) dt

First term
1 T
lim7 00 (ﬁ) / (A%/2)[cos2 *x TT * f % (2t + 1) +2O(s1))] dt =0
-T
(As described in Time average in mean)
1 T
= llmT_)oo (—) / Xt(sl)XtJ’-f(sl) dt
2T ) J_r

T
= lim7r—oo (%) /;T(Az/Z)[cos(Z x [Txf*(2t+ 1) +20(s1))
+cos(2 x IT x fx 7)] dt

T
/ (A%/2) [cos(2 % IT x fx 7)] dt
-T

(A%/2)[cos(2 * TT  f x ‘L’)][ dt
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= lim7— o (%) (A%/2)[cos(2 * IT * f % 7)](2T)

= lim7 00 (A2/2)[cos(2 * IT * f % 7)]
= (A?/2)[cos(2 * IT * f % 7)]

Thus Ensemble average in autocorrelation = Time average in auto correlation
= (A%/2)[cos(2 * TT * f % 7)] is the function of ‘z’.

Hence the random process X; = Acos(2*IT*f*t + ®) (where ‘@’ is uniformly
distributed between (0 to 2*IT) is Ergodic in autocorrelation

3.12 Independent Random Process

Let X; and Y; be two random processes. Let X = [X;1 X2 X¢3 Xpa ... Xp] be the
random vector obtained by sampling across the random process X; at time instants
tl, t2, ... tn. Similarly the random vector Y = [Y;1 Y2 Y3 Yia... Y] is obtained
by sampling across the random process Y.

The random process X; and Y; are independent if the random vectors X and Y
are independent random vectors.

(i) Fxy() = Fx(OFr(

3.13 Uncorrelated Random Process

Let X; and Y; be two random processes. Let X = [X;1 X;2 X¢3 Xia ... Xy] be the
random vector obtained by sampling across the random process X; at time instants
tl, t2,... tn. Similarly the random vector Y = [Yy1 Y2 Y¢3 Yia... Yy,] is obtained
by sampling across the random process Y.

The random process X; and Y; are uncorrelated if the cross-covariance matrix
computed as E (X — mK)T (Y — my)) is the diagonal matrix.

3.14 Random Process as the Input and Output of the System

Consider the Linear time invariant system described by its impulse response h(t)
(Fig. 3.4). Let X; be the W.S.S. random process which is given as the input to the
system h(t) and Y; be the corresponding output random process which is also W.S.S.
Then ffzo h(t)X;—; dt converges to the output random process in mean square
sense. (i.e.)
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+ Linear Time invariant %
X4 System Y

Fig. 3.4 Random process as the input and output of the LTI system

o
th's's Z[ h(f)Xt_rdT
—00
o0
= E([Y; —[ h(t)Xi—cd7]*) =0
—00
Properties

1. Mean of the output random process E(Y;) is constant

Proof.

E(Y) =E (/oo h(t)Xi—dT

= /oo h)E (X,—o) dt

—00

/00 h(t)ymx dt

—00

:mX/:h(r)dr

= constant.

2. RYX (t, S) = E(YIXS] = Ryx(‘[) = h(‘[) k RX(‘E)
Proof.

Ryx(t,s) = E(Y;Xs] = Ryx (1)

([ rorsar) x]

_ /oo W) E(Xi—e Xs) d T

_ /oo h(ORx(t — 7 —s)dt
_ [oo WO Rx(t —s — 1) dt

= [ hore - oar

133
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y =t —s(say)
= Ryx(v) = h(7) * Rx(7)

3. Ry(r) = Rx(7)*h(z) * h(-71)
Ry(t,s) = E(Y:Ys] = Ry (7)

([ o)

- /oo ") E(Y, Xy—e) dt

= /oo h(t)Ryx(t —s +1)dt

_ /w B Ryx (v + 1) d

y =1t —s(say)
Letd = —1
= Ry(r) = [oo h(—=8)Ryx (-8 +1)dt
= [ H@Rm s+ 0
Let
H'(8) = h(=8)(say)
= Ry(l') = h/(‘f) * Ryx(‘f)
= Ry(l') = h(—l’) * Ryx(l')
‘We know,

Ryx(t) = h(r) * Rx(7)
= Ry(t) = h(—71) *h(t) * Rx(7)

Note that the above mentioned properties are true for the complex random
process also.

3.15 Power Spectral Density (PSD)

The power spectral density of the W.S.S. random process X; is defined as the Fourier
transformation of its autocorrelation function Ry (7). (i.e.)
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Sx(f) = /  Ry(0) e 2T gy

—00

Consider the Linear time invariant system described by its impulse response h(t).
Let X; be the W.S.S. random process which is given as the input to the system h(t)
and Y; be the corresponding output random process which is also W.S.S.

We have shown that

Ry () = h(=7) * h(7) * Rx (1)
Taking Fourier transformation on both sides

= Sy(f) = H(f)H(=f)Sx(f)
= Sy(f) = H(f)H*(f)Sx(f)(Assuming h(7) is the real function)

= Sy(f) = [H(IPSx(f)

We have also shown that
RYX (‘L’) = h(—‘l,’) * Rx(‘l,')
Taking Fourier transformation on both sides

= Syx(f) = H()Sx(f)

The power spectral density Syx (f) is called as Cross power spectral density.

Properties of power spectral density

1. Sx (0) = % Rx(r)dt

2. Rx (0) = /%, Sx(f)dr = E (X,?)
Note that mean square value is obtained from all frequencies of the spectral
density

3. Sx(f) is always real for all values of ‘f> and > 0

oo

Sx(f) = /_ Ry (1) 72 dx

oo

0
:[ Rx (1) e_jznffdr+/ Rx(t) e /274
0

—00

0 o]
Z[ Rx(7) e_jznfdt—i—/ Rx(v) e /2T g
0

—00

Letu=—1

=/ Rx (—u) eﬂ”f“du+/ Rx (1) e /217 q
0 0
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=f Rx (—u) efznf”du+f Rx (1) e /217 q
0 0

oo

oo
:/ R}(u)efznf”du—i-[ Rx () e /274
0 0

[Using the property of complex auto correlation (i.e) Ry (—u) = R (u)]

o0 . o0 .
=/ R () eﬂﬂf"du+/ Rx (1) e /274
0 0

o0 . o0 .
/ [Rx (v)e /2T q1]* / Rx(v) e /24
0 0

which is the real value and hence power spectral density Sx(f) is always
positive. (i.e.) Sx(f) =0

4. If the W.S.S. random process X; is real, then Sy (f) = Sx(—f)

5. Consider the W.S.S. random process X; and the corresponding autocorrelation
function and spectral density function are given as Ry (z) and Sy (f) respec-
tively and Sy (f) = O for |f| > W, then the random process X; is said to be
band limited with Bandwidth ‘W’

6. Consider the system which is Band limited with bandwidth ‘W’ (Fig. 3.5).
Consider the band limited W.S.S. random process X; which is given as the
input to the system. The output of the system is the random process Y;, then
E([X: — Yt)z) =0

Suppose W; and V; are the responses of the system H;(f) and H,(f) to the band
limited process ‘X;’ (Fig. 3.6)

If Hi(f) = H2(f) forall | f| < W, then W; and V; are equal in Mean Square
Sense. (i.e.) E[(W; — Y1)?)] =0

IH()!

. /

Fig. 3.5 Transfer function of the band limited system
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Ve Ve H4(f) 7
X4 \_{_Vt
v,
Ha(f)
> 7

Fig. 3.6 Response of the system to the band limited process

Proof. Let Z, = (W, — Y;)
= E[W: —Y)?] = E[Z/]
We know that,

Sz(f) = Sx(HIHI?
where H(f) = Hi(f) — H2(f)

Also E [Z,*] = R.(0)

_ [: S2(f)df

_ / Sx(HIH)P df

Because H (f) = O forall | f| < W and Sx(f) =O0forall | f| > W
Thus E[(W; — Y/)?)] =0
3.16 White Random Process (Noise)

The random process X; is said to be White Gaussian Random process, if Mean =
my (t) = E(X;) = 0 for all time instant ‘t’

Rx(t.5) = Rx (03(1)

Sx(f) = constant.
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White noise has zero mean and infinite variance, which cannot be realized in
practical situation. The white noise obtained in real time can be viewed as the fil-
tered white noises through the Band limited filter whose frequency response flat
over the bandwidth of interest.

3.17 Gaussian Random Process

The Random vector X; is said to be Gaussian Random Process if the random vector
obtained by sampling across the process X; at time instants tl, t2, t3, ... tn (Repre-
sented as [Xy1 Xs2 ... Xu]) is a jointly Gaussian random vector.

Properties

1. If the input to the Linear, stable system is Gaussian random process, then output
is also Gaussian random process. Note that the system can also be Time variant

2. If X; is Gaussian and W.S.S. it is also Strictly Stationary

3. The random process X; is said to be White Gaussian Random process, if

X; W.S.S. Gaussian Random process

Mean = mx(t) = E(X;) = 0 for all time instant ‘t’

Rx(t, 5) = Rx (1)8(v) &2

Sx(f) = constant

Note that there can be White Non-Gaussian Random process.

Example 3.5. Gaussian Random process

1. Wiener process [Non-stationary random process]
e Mean = my(t) = E(X;) = 0 for all time instant ‘t’
e Rx(t,s) = o?min(t,s) + m?tsforallt,s > 0

2. Gauss-Markov process[Stationary random process]
e mx(t)=0
o Rx(t,s) =02 Plt=sl 62 B> 0forallt,s >0
e Lettl,t2,t3 be the three samples instance of the Gauss Markov random process
with 3 > (2 > t1, then fyis/x2 x1 = fxiz/xe

In general conditional density of the random variable obtained at particular time
instant tn given the random variables obtained at set of time instants t1,t2,t3,..tn —
1 withtl < t2 < ...tn — 1, is equal to the conditional density function of the
random variable obtained at time instant tn given the random variable obtained at
time instant tn — 1.

(i.e.) Let t1,t2,t3,..tn be the three samples instance of the Gauss Markov random
process with tn > tn—1 > tn—2...t2 > tl, then fxm/xm—1 xm—2 ... xt1 = Sxm/xmn—1
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3.18 Cyclo Stationary Random Process

The random process X; is said to be strictly stationary random process

Fxn xo.x3.x4...xn (01, 002,03, . .. on)

= Fxntrx0t7 X347 Xtb 7.+ Xm+z (01, 02, a3, ... an)

forall t,al,a2,a3,...an
Ift =nT wheren=...—2, —1, 0, 1, 2 ... and T is constant, the random
process is said to be cyclo stationary random process with period “T’.

Example 3.6. X; =Y o2 Ap p(t — nT) is the cyclo stationary random process,

n=—00
where Ay is a discrete time strictly stationary process. p(t) is the function of ‘t’.

3.19 Wide Sense Cyclo Stationary Random Process

The random process X; is W.S. Cyclo stationary random process if

myx(t) =0
Rx(t,s) = Rx(t + nT,s +nT)

Example 3.7. Consider the Discrete wide sense stationary random process A, that
takes the values 4+1 and —1 with equal probability at all time instants (Stream of
Binary data). Let the pulse used to modulate the above mentioned binary stream is
p(t) having nonzero values for 0 < ¢ < T. The random process defined as X; =
Yo oo Anp(t —nT) is cyclo stationary.

Let this random process be the input to the channel input and the random process
Y, is the random process of the output of the channel (i.e.) in the receiver section.
The random process Y, is represented as follows. ¥; = Y 02 A, p(t —nT — 0),
where @ be the time delay of the pulse p (t) which can be viewed as the random
variable which is uniformly distributed between O to T. The random process Y; is

the Wide Sense Stationary random process.

Proof.

Xe = Z:o:_oo App(t —nT)
my(t) = B(X,) = Z:OZ_OO E(An)p(t —nT)
= Z:o:_oo kp(t —nT) which is periodic with time
period ‘T’
= mx(+T)=mx(1)
Xe = Z:o:_oo App(t —nT)
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Rx(t.s) =E(XiX) = Y~ 3" E(AyA)p(t —KkT)p(s —nT)

> Ralr—k)p(t —KT) p(s —nT)
n=—00 k=—00

Changing the limit m = n—k

o0

= 3 Y Ra(n—k)p(t—KkT) p(s—nT)

n=—00 k=—00

= Z Z Ra(m) p(t —nT +mT) p(s—nT)

n=—00 m=—0o0

:>RX(t+T,s+T)=Z:o:_ooZ::_ooRA(m)p(t+T—nT+mT)
p(+T—nT)
= Z Z Ry(m)p(t—nT +mT) p(s—nT) = Rx (¢,5)

n=—00 m=—0o0

Hence X; = Y22 Ay p(t — nT) is cyclo stationary process.

n=-—00
The random process Y; = Y vo _ A, p(t —nT—0) [O is uniformly distributed
between 0 to T] is wide sense stationary random process

Proof. Computation of mean

Y, = Z:"__OO Aup(t —nT — O) i
E(Y:) = EolE(Y:/O = a)]
= Eg[E(Y;/® = a)]
[E(Y:/O = a)]
= E(np@—nT —a)
= Z:o__ookp(t—nT—a)

o
= mx(t — a)[Because mx (1) = » kp(t —nT)
n=—oo
which is periodic with time period ‘T’
= Eo[E(Y:/O = a)]
= Eg[mx(t —a)]

T
= (%)/0 mx(t —a) da

Note that mx (¢) is periodic with time period ‘T’ .mx (¢t — a) is the shifted version
of mx (t) and hence (%) fOT mx (t — a)da is constant.
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E(Y;+:Y:) = EolE(Y;4: Y;/O = a)]
(o8] o]
EYisee/O=a)=3 >  Awplttr—mT —a)
App(t —nT —a)
oo o]
= > E(AnAm)p(t + 1 —mT —a)
n=-—o00 m=—00

pt —nT —a)
- Z:o:_oo Z:z_oo Rs(n—m)p(t +1—mT —a)
p(t —nT —a)

Letk=n—m

oo oo

= > Y Rak)p(t+t—nT +kT —a)

n=—00 k=—00

p(t —nT —a)

> > Ratk)p(t+t—nT +kT —a)

n=—00 k=—00
p(t —nT —a)
S EQlE(Yi4:Y: /O = a)]

1 T _ o
(?) /0 Zn=—oo Zk=—oo Ra(k)p(t +7—nT
+kT —a)p(t —nT — a)da

1 [ele] [ele] T
:(7) Z Ra(k) Z /0 pt+v—nT

K=—00 n=-—00

+kT —a)p(t —nT —a)da

Letu=tr—nT—a

00 s t—nT
-(7) ¥ mato 3 | bt kT pd
t—nT

Consider Y02 [7-" 7 p(u+ © + kT) p(u)du
Letf(u) = p(u+ t + kT)p(u)

(+3T t+4T t
:...+/t+2T f(u)du+[+3T f(u)du+[_Tf(M)dM
t—=T t—2T
+ f(u)du—l—[ Swdu+---
T t—T

t—2

141
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)
— [ rwdu
—00

= /00 pu+t+kT)p(u)du

—0o0

= /00 pu+t+kT)p(u)du

—0o0

= Rp(t 4 kT) which is the autocorrelation of the deterministic signal pulse p(t).

00 00 T
:>(l) > Rak) > / pt+t—nT +kT —a)p(t —nT —a)da
0

T
K=—00 n=—00

1 00
= Ry(0) == | D, Ra)Rp(r +kT)
Which is the functionof t—s = t and hence Yy = Y o2 An,p(t —nT—O) [‘'©’
is uniformly distributed between O to T.] is Wide Sense Stationary process.

Taking Fourier transform on both sides of the equation

Ry(t) = (%) Z:’:_m Ra(k)Rp(t +kT)
we get
Sy (f) = (%) S Ra(k)e 2 kT p( )R
K=—00

Where P(f) is the Fourier transformation of the autocorrelation function p(t).
Also note that Rp(¢t) = p(t)*p(—t) and hence Fourier transform of Rp(7) is

P(I?

3.20 Sampling and Reconstruction of Random Process

Consider the Band limited continuous random process X; with bandwidth ‘W’ (i.e.)
Sx(f) = 0V|f| > W, which is sampled with sampling rate (%) > 2W to obtain the
discrete random process X, Then the sequence of random process X; V)

to random process X; in mean square sense as N—> oo, where

n=N t . 2
X, M = Zn:_N Xnur sinc ((7) - n) .(i.e.) E ()Xt — X,(N)‘ )

= 0as N-> oo.

converges
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Proof. The requirement is to show that E (|X, — X,(N)|2) = 0asN— > oo.

et 0 = |- 57, e (£) 1))
= E(IXP) =X E(XiXfy) sine ((%) - n)

- Z,IL_N E (XX} sinc ((%) - n)
FY o E i) sine () =)

w((5))

Note that if X; is bandlimited then the corresponding autocorrelation function
(i.e.) Rx () bandlimited and Rx () can be viewed as the band limited signal and
hence using sampling theorem, Ry (¢) can be reconstructed using the following

formula
Rx(t) = Zzo:_oo Rx(nT))sinc ((%) — n)

The shifted version of the signal (i.e.) Rx(t — t) can be reconstructed using the
formula as shown below.

Rx(t — 1) = Z:o:_oo Rx(nT — 1))sinc ((%) - n)

Att=r1

Rx(0) = Z:o:_oo Rx(nT —t))sinc ((%) — n) ________ (1)

Similarly we can show that

Rx(0) = Z:o:_oo Rx(t —nT))sinc ((%) — n) ________ 2)

Consider the four terms in the expanded form of the equation E (|X =X, W )|2)

(as shown above). Applying the limit N — oo individually on the four terms we get
the following.
First term E(| X;|?) = Rx(0)

N t
Second term : E N E(X: X,;p)sinc ((?) — n)
n=—
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N
lim Z Rx(t —nT))sinc ((%) —n) = Rx(0)

N—o0
n=—N

(From Egq. (2))

Third term : Z:/:_N E(XurX[)sinc ((%) — n)
N
lim Z Rx(nT —t))sinc ((%) —n) = Rx(0)

N—o0
n=—N

(From Egq. (1))
Fourth term

Z;11V=—N Z::-N E(Xn1 Xp7)sine ((%) — n) sinc ((%) — m)
- Zn=_N Zm=_N Rx(nT — mT)sinc ((7) - n) sinc ((?) _ m)

Consider the term

N
lim Rx(nT —mT)sinc ((%)—n) = Rx(t —mT)
N

N —>o0
m=

(From the Reconstruction formula of sampling theorem)
N t

Nli_r)noo Z Rx(t — mT)sinc ((?) - m) = Rx(0)
m——

=—N

(From Egq. (2))
Thus the

2 n=N t
. 1%\ _ .
Nh_r)r(le (’X, . ‘ ) =FE ( X — E e N XnTSsinc ((T) —n)

Rx(0) — Rx(0) — Rx(0) + Rx(0) =0

2)
Hence proved

3.21 Band Pass Random Process

The Random process is said to be Band pass Random process if its spectral density
have band pass frequency response.
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Example 3.8. The Random process X; 2 X! cos(2I1 f.t)— X, 0 sin(211 f.t) forms
the Band pass W.S.S. Random process if the following conditions are satisfied.

X,T and X, € are the Low pass random process
They are Jointly W.S.S. Process

Ry1(t) = RxQ(7)

Ryrxo(r) = —Rxoxi(7)

Proof. To make the random process X; as the Wide sense stationary process,
Rx (¢, u) should be the functionof T = t—u

Ry(t +7.7) = E(Xi1:Xo)

Let A = X;4 ! cosQITfo(t + 7)) — Xs4:2 sinQIT £, (t + 7))
B = X;! cos2ITf,t) — X, € sin(QIT f,t)
=E(AB) consists of four terms.
I term: E(X; 4! cosQRITf.(t + 1)) X, cos(2I1 f,1))

=E (X,H’X,’% [cos(2MT f.(2t + 7)) + cos(2IT fcr)])
= Ry: (r)% [cos (21T f (2t + ©)) + cos(2IT f.7)]
Second term: —E (X;4. cosQIT fo(t + 1)) X2 sin(2I1 f;1))
=— (X,+,’X, Q% [sin(2IT f.(2t + 7)) — sin(2I1 £, r)])
= —Ry1xo (@) [nQIIfe (1 + ©) — sin(2ITf,)]
Third term: —E (X4 sinITf.(t + 1)) X’ cos(211f.1))
=E (XH,QX,’% [sin(2ITf.(2t + 7)) + sin(2IT fcr)])
= Rysxo (1) [Sn@ITfe(2t + ) + sin(Tfo)]
Fourth term: E (X;4.2 sinITf.(t + 7)) X, 2 sin(2[1 ;1))
=E (X,HQXtQ% [—cos(2IT £, (2t + 7)) + cos(2IT fcf)])
= Ryo(1)3 [ cos(ITfe(21 + 1)) + cos(2IT )]

_ [Rxl(r) J; RxQ(f)] cos2T o) + [Rx/xg(f) - RXQX’(’)] sin(211 £, 7)
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+ [RX’(T) J; RXQ(I)} cos2IT£u(2t + 1))

i [—RX'XQ (7)2— Ryoxi(7)

:| sin(2ITf. (2t + 7))

To make the above expression independent of ‘t’ First and second term is already
independent of ‘t’. To make the third and fourth terms independent of ‘t’, the fol-
lowing conditions have to be satisfied.

Ryi1(t) = Rxo(7)
—Ryirxo(r) = Ryoxi(7)

Hence proved.

3.22 Random Process as the Input to the Hilbert
Transformation as the System

Let W.S.S random process X; be the input to the system (Hilbert transform) whose
frequency response is as shown below (Figs. 3.7 and 3.8). -
The Hilbert transform of the random process X; is represented as X;.

Properties

L. Sg(f) = Sx(f)
Sg(f) = Sx(NHIH)I?

H(f)

=
Fig. 3.7 Transfer function
of the Hilbert transformation

Fig. 3.8 Hilbert
transformation system
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|H()I?
Hence S (f)

1 for all f (see Graph)
Sx(f)

2. Sx}?(f) = _Sfx(f)
We know,

R)?X(t) = Rx(‘t) *h(‘L’)
= Ry y(—7) = Rx(—7) * h(-7)

The function Rx (1) is the even function. .". Rx(t) = Rx(—1)
The impulse response of the Hilbert transformation system is given as

1
h(t) = (H_t) forall t
= Ry y(=1) = —Rx (v) * h(7)
= _RXX(T)
Also we know Ry (1) = E(Y,;X,) = E(X,f,;) =Ry (-17)
= RX’X(_T) = RX )2(‘[)
From the above
= RXX(T) = —R}?X(‘E)
Taking Fourier transformation on both sides, we get
Sxx(f) =—=Sgx(f)
3. E(X:X;) =0
Proof. From property 2 we get,

Ry 3 (1) = =Ry (1)
= RX}?(O)Z—R}?X(O) ————— (1)

Also we know

E(X,X:) = E(X:X;)
:RXX(O)ZR}?X(O) —————— (2)

From (1) and (2) we conclude Ry 3 (0) = 0

= E(X,X;) =0
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4. Let Z, = X; + j X, then

E(Zi4:Ze%) = B((Xepr + j Xop o) Xepr — j X p)]
E(Xi4:Xe) — ] E(X142X1) + JE(Xe 40 X0) E(Xr 40 Xy)

= Rz(t) = Rx (1) — jRy 3 (1) + jR3 4 (v) + R (7)

From the property 1 and property 2, Rx(t) = Ry (7)

Ry x(1) = —Ryx (1)
= Rx(r)-i-sz}?X(f)
= Rz(1) = 2Rx (1) + 2jRx (1) * h(1)

In frequency domain (By taking Fourier Transform), we get,

Sz(f) = 28x(f) +2jSx(/)H(])
= Sz(f) =2Sx(f)(1 + jH(f)) (See Figure 3-7)
= Sz(f) =4Sx(f) for f >0
=0 for f <0

3.23 Two Jointly W.S.S Low Pass Random Process Obtained
Using W.S.S. Band Pass Random Process and Its Hilbert

Transformation

Let X; be the W.S.S. Band pass Random process

Define X, * £ X+ 3(7

From the property 4 of Hilbert transformation, we get

Sx+(f)=4Sx(f) for f >0
=0for f <0

~ A o
Define X; = X, Te/2*xfext

E(X;4: X;) = Rx~(1) =E (Xt+r+€_j2*n*f"*(t+1) Xt+€_j2*n*f"*(t)>

- E (Xt_f+Xt+€_j2*H*fC*(T)>

= Rx~(t) = Ry+ (1)e /2T fex(@)
= Sx~(f) = Sx+(f + fo)
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LetX,” = X!+ Xx,¢

= X,I = Real (Xt+e—j2*H*_f(r*(t)) — Real ((Xz n ]j(?) e—jZ*H*fc*(t))

= X,cos(z*H*fc*t)+5(\tsin(2>k17>kfc*t)
Similarly

X, 2 = Imaginary(X,+ e /2*I*Jcxt)
= 3(\,cos(2*1'[*fc*t)—X,sin(Z*H*fc*z)

In the same fashion it can be shown that

X, = Xx,! cos(2* ITx foxt)— X, ¢ sin(2 * IT % f, x t) (Which is of the same
form as mentioned in Example 2.11)

The random process X;7 and X, satisfies the following conditions.

e Ryi(t) = Rxo(7)
e Ryrxo(t) =—Ryoxi(7)

Sx1(f) = Sxe(f) = (3) [Sx~(f) + Sx~(=/)]

(Low pass frequency response)

o Syixo(f) = (4)Sx~(f) = Sx~(=1)]

(Low pass frequency response)

Thus jointly wide sense stationary low pass random process X, ! and X; 2 are > gen-
erated using the Bandpass random process X; and its Hilbert transformation X; as
mentioned below

X, ! = Xycos(2xI1 x fe *t)+5(\, sin(2 « IT % f. x 1)

X2 = 5(?005(2*17*fc 1) — Xy sin(2x I1 % fo xt)

Proof Ryi(x) = E (X,H’ (X,’)*)
We know

X~ =x!+;x°

(X7 + (X))
B 2

S B (X)) = E (

= X,/

(Xi4m + (X)) (X ™ + (Xt~)*))
2 2

1 o 1 o 1 o~
= ZE(Xt'i‘T X; )+ZE(XH-': (X; )*)+ZE((Xt+t ) X:™)
1 - -
+ZE((Xt+T ) (X))

Tterm: 2 E (X;4:"X,") =0
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_ iE (Xt+r+e—j2*pi*fc(t+r)Xt+e—j2*Pi*ftrT)
1 . ) ) _ . .
ZE ((Xt+'c +j Xt+‘l:) e—j2*pl*fc-(t+f) (Xt -I-j Xt) e—jZ*Pl*ch)

. . 1 — —_
= /2P (X4 Xipo) (X4 K2))

. . 1 — —~
= ¢ I2PICHD (B (X Xo) + JE (XiweXe) + JE (Xowe Xo)

— E(Xi4:X))
= ¢/ fc<2t+T>Z (Rx (0) +jRy5 (1) +jRyy (1) — Ry (V)
From the property of Hilbert transformation mentioned in 3.22, we get the following

Rx(t) = R3(v)
Ry (1) = =Ry (1)

Hence E(X;+:"X;7) =0
II term: %E(X,+r~(X,N)*) = %Rxw(‘t)
I term: 3 E((X;4+<7)* X, ™) = $E(X,™ (Xy47)*) = Rx~(=7)
IV term: 2 E((X;4:")*(X:™)*) =0
This can be obtained in the same fashion as that of the I term.
Thus

1
Ry:(v) = 1 [Rx~(v) + Rx~(—1)]
Taking Fourier transformation on both sides we get
1
Sxr(®) = 7[Sx~® + Sx~(=1)]
In the same fashion we can show
1
Sxo () = J[Sx~(® + Sx~(=f)]

and Sy1v0(f) = ({I) [Sx~(f) — Sx~(—f)]

Example 3.9. Consider the Band pass random process X; whose spectral density is
as shown below (Figs. 3.9 and 3.10).

Ry~(1) = E(oae™(Xe)") = E (Koo (X, )7 e /200000 gs2000 1))
= Ry + (1)e /2*Pi*/c(®
= Sx~(f) = Sx+(f+ 1)



3.23 Two Jointly W.S.S Low Pass Random Process 151

Sx(h
/ \ | / \
-40 -10 10 40 fM Haz
Fig. 3.9 Spectral density of the band pass random process
Fig. 3.10 Spectral density
of the X,;© Sx*(f)
4 I/
T T T
10 40 fMHZ
Fig. 3.11 Spectral density
+
of the X, SX"' (f)
4 —\
T T
-5 35 fMHZ
We know that

Sx + (f) = 4Sx(f) for f >0
=0for f <0

Let f. be chosen as 15 MHz so that the spectral density Sx~ (f) looks like the fol-
lowing (Fig. 3.11).

Thus the spectral density of the X tI and the X, ,Q are as shown below (Figs. 3.12
and 3.13).

Note that Sy (f), Syo (f) and —j Sy yo (f) are having low pass characteristics.
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2 NSK'(h)
‘\1
T T T T T T
-35 -30 -5 5 30 35 fMHZ

Fig. 3.12 Spectral density of the X, which is same as that of the spectral density X, ,Q

- Sy ! xQf)

—1?:5 —(?0 D

T T
5 3035 [MHZ

Fig. 3.13 Spectral density —jSxsxo (f)



Chapter 4
Linear Algebra

4.1 Vector Space

1. The set of vectors forms the vector space ‘V’ over the Field ‘F’, if the vectors
belonging to that set satisfy the following properties

(a) If vl, v2 are the elements of the vector space ‘V’, then the vector defined
by vl + v2 must be the element of the vector space ‘V’.
(b) For some scalars {‘a’ ‘B’} € F.

(. +P)v = av + Pv.
(@p)v = av).

(c) There exists the identity scalar represented as ‘1’ such that 1.v = v.1 = v.

(d) There exists the additive identity vector represented as ‘0’ such that for any
vector ‘v’ € vector space, v+ 0=0+v =v.

(e) There exists the additive inverse vector for every vector ‘v’ € vector space
which is represented as ‘—v’ such that v+ (—v) = 0, where 0 is the additive
identity vector which is the element of the vector space.

) (vI+v2)a=avl+av2

(g) v1 + (v2+4v3) = (vl + v2) + v3.

(h) aveVwherea € Fv € V.

2. ‘W’ is the subspace of the vector space ‘V’ (W C V) if the elements of the
set ‘W’ is the subset of the vector space ‘V’ and satisfies all the properties
mentioned in the fact 1.

3. f W1 € Vand W2 C V, then WI N W2 C V. But W1 U W2 C V only when
W1 C W2or W2 C WI.

4. The set of vectors {vl, v2, v3, v4...vn} are said to be linearly indepen-
dent if al vl + a2 v2 + a3 v3 + a4 v4 + ...an vn = O for some scalars
{al, a2, a3...an}, thenal = a2 =a3 =...an = 0.

5. If the set of vectors {v1,v2,v3,...vn} are linearly dependent if any one of the
vector in the set is represented as the linear combinations of other vectors.

6. The set of vectors {v1,v2,v3,...vn} forms the Generating set of the vector
space ‘V’ if any vector in the vector space ‘V’ can be represented as the linear
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10.

11.

12.

13.

14.

15.

4 Linear Algebra

combinations of the vectors in the Generating set. Also note that the Generating
set is the subset of the Vector space ‘V’.

. Generating set which are linearly independent is called the basis of the vector

space ‘V’.

If {v1,v2,v3,.. .vn} be the basis of the vector space ‘V’, then the set of (n + 1)
vectors in the vector space is always dependent.

The set of minimum number of the vectors which forms the Generating set of
the vector space ‘V’ is called as Minimal Generating Set.

The maximum number of independent vectors collected from the vector space
“V is called maximal independent set.

If {ul,u2,u3,.. .un} is the minimal generating set, then the maximal independent
setis {ul,u2,u3,...un}.

If {ul,u2,.. .un} is the maximal linear independent set then {ul,u2,u3,.. .un} is
the basis of the vector space ‘V’.

The number of elements of the set is called as the cardinal number of the set.
The cardinal number of the Basis set is called dimension (dim) of the vector
space ‘V’.

If W is the subspace of V(W C V) then

(a) the Basis of W C Basis of V.
(b) Any basis of ‘W’ is extended to the basis of ‘V’.
(¢) dim(W) C dim(V).

If W1 € Vand W2 C V then

(a) dim(W1 U W2) = dim(W1) + dim(W2) — dim(W1 N W2).

(b) Let the basis for the subspace W1 N W2 is {ul,u2,u3,.. .uk}.
The basis for the subspace W1 is obtained by extending the basis of the
subspace W1 N'W2 as {ul,u2,...uk,wl,w2,w3,.. .wm}. Similarly the basis
for the subspace W2 is obtained by extending the basis of the subspace
W1 N W2 as {ul,u2,u3,...uk,vl,v2,v3,.. .vn}. Note that the dimension of
the vector space W1 is k + m and the dimension of the vector space W2 is
k + n.

(c) The basis of the vector space ‘V’ is obtained as {ul,u2,...uk,wl,w2,
w3, ...wm,v1l,v2,v3,.. .vin}.

4.2 Linear Transformation

1.

Let ‘U’ and ‘V’ be the vector spaces over the field FA Map T: V — V is called
linear transformation if

(@) T(u+v) =T(u) + T(v)
(b) T(a U) = a T(u)

whereu e Uandv € V
The Linear map is graphically represented as follows (Fig.4.1).
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Fig.4.1 Linear T:U—p—V

transformation

u3

u4

un } vm

Fig. 4.2 Injective
transformation

2. The linear transformations are broadly classified as (a) ONE-ONE (Injec-
tive) transformation (b) ONTO (Surjective) transformation (c) Isomorphic
(Bijective) transformation.

(a) Injective transformation (Fig. 4.2)
A Linear map T: U — V is said to be injective if T(ul) = T(u2)

= ul =u2

In this case ker(U) = {0}. Also note that dim(U) <= dim(V)
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Fig. 4.3 Surjective
transformation

vi \ ; / ul
v2 D u2
vn 4 un
: )
vn+1 4 0
vn+2
vn+3
vm

Fig. 4.4 Isomorphic
transformation

o\

v2

>
>
v3 > u3
>
>

v4 ud
v5 / \ ub
vn > un

(b) Surjective transformation (Fig. 4.3)
A Linear map T: V — U is said to be surjective if, for any w € W, there
exists v € V, such that T(v) = w.
dim(V) <= dim(W). In this case Ker(V) # {0}

(c) Isomorphic transformation (Fig.4.4)

A Linear map T: V — U is said to be isomorphic, if the transformation is both
Injective and Surjective in nature.

dim(V) = dim(W)
dim(Ker(V)) =0
Ker(V) = {0}
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Ker(V)

Fig. 4.5 Illustrations of the kernel and Image of the vector space

3. Let the linear transformation T: V. — W is defined as the linear map from the
vector space ‘V’ to ‘W’ (Fig.4.5).

(a) The image of the vector space ‘V’ represented as Im(V) is the set of vectors
which are linearly mapped from all the vectors in the vector space V. Note
that Im(V) is the subspace of the vector space ‘W’.

Im(V) = {Tu, forallu € V}

(b) The Kernel of the vector space ‘V’ represented as Ker(V) is the set of vec-
tors in the vector space ‘V’ which are mapped to the zero vector (Additive
identity) in the vector space “W’. Note that the kernel of the vector space
‘V’ is the subspace of the vector space ‘V’

Ker(V) = {u such that Tu = 0}

4. Properties of the linear transformation

(a) Two vector spaces are said to be isomorphic, if there exists the isomorphic
transformation between them.

(b) Isomorphic transformation between the vector space V and W exists only
when dim(V) = dim(W).

(c) The Linear transformation ‘T’ is one-one transformation if and only if the
Transformation takes independent sets into other linearly independent sets.

(d) Consider the Linear transformation T: U — W. The transformation ‘T’ is
one-one transformation if there exists always pre-image (i.e.) if w € Wt
here exists u € U such that Tu = w.

(e) If (ul,u2,u3,.. .un) be the basis of the vector space U and (w1,w2,w3,...wn)
be the basis of the vector space ‘“W’, then their exists the unique transfor-
mation T, such that Tul = w1, Tu2 = w2...Tun = wn.
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Ker(V)

Fig. 4.6 Rank-Nullity theorem

5. Rank-Nullity Theorem (Fig. 4.6)

Let the basis of ker(V) be {v1,v2,v3,...vn}. Extend this to the basis of V as

{vl,v2,v3,...vn, vn + 1, vn 4+ 2,... vm}.Then the the set of vectors
{T(vn+ 1), T(vn 4+ 2), T(vn + 3) ... T(vm)} forms the basis of Im(V).
= dim(V) = dim(Im(V)) + dim(ker(V))

. Let the basis of the vector space ‘V’ be v1,v2,v3,...vm and the basis
of the vector space ‘W’ be wl,w2,23,...wn. The set of all transforma-
tions from the vector space V to W is represented as L(V,W).L(V,W) is
the vector space with dimension dim(V)dim(W). The basis of the vector
space T(V,W) is represented as T11,T12,...T1n,T21,T22,T23,... T2n,T31,
T32,..T3n,... Tm1,Tm2,Tm3,. . . Tmn which satisfies the following condition.

Tij (vk) = wjifi =k
= 0, otherwise
. Let V be an n-dimensional vector space over F. Then the dual space V* is an n-

dimensional vector space over F which consists of set of linear transformations
and satisfies the following conditions (Fig. 4.7).

(a) The Unique basis of the Dual space V* is the set of transformations
{T1,T2,T3,...Tn}

such that Ti(vj) = 8ij, where 8ij = 1ifi =

= 0, otherwise

(b) For any linear transformation T € V*

n
T= Zi=1 T (vi)Ti
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Fig. 4.7 TIllustration of the dual space

10.

(c) For any vectorv € V

n
V= Zi:l Ti(v)vi

Consider the arbitrary transformation T which is written as the linear combi-
nations of the vectors T1,T2, T3,... Tnas T = al*T1 + a2*T2 + a3*T3 +
...an*Tn

T(vl) = (a1*T1 + a2*T2 + a3*T3 + ...an*Tn)v1
= al*T1(v1) + a2*T2(v1) + a3*T3(v1) + ...an*Tn(v1)
=al+0+0+...4+0
= T(vl) = al
Similarly T(v2) = a2, T(v3) = «3,...,T(vn) = an.
Consider the arbitrary vector V which is written as the linear combinations
of the vectors v1,v2,v3,...Vnasv = B1*vl + p2*v2 + B3*v3 + ... + fn*vn
Ti(v) = Ti(B1*v1 + B2*v2 + B3*v3 +...Bi*vi+ ... + Pn*vn)
=04+04+0+4...8i4...0
= Bi

. Set of all transformations acting on all the vectors in the subspace W C V to

get zeros are called Annihilator WO (Fig. 4.8) dim(w) 4+ dim(w®) = dim(V).
Let the basis of w be {w1,w2,w3,...wk}. Extend the basis to the basis of V as
{wl,w2,w3,...wk, wk +1,...wn}. {Tk+1,Tk+2, Tk + 3,... Tn} is the basis
of the w°.

. Any ‘k’ dimensional subspace is the intersection of (n — k) subspaces with

dimension (n — 1) (Fig.4.9).
Let ker(fi) = Ni. f is the linear combinations of f1,f2, f3,...fk if and only if
NINN2N3...NNKCN.
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“_

Fig. 4.8 Illustration of the annihilator

dim=n-1=5-1=4
dim=k=2

Fig. 4.9 Illustration for the property 9 of the linear transformation

11. Consider the transformation from the vector space V to W as T: V.— W.
Consider the dual space for the vector space V and W be represented as V* and
W* respectively.
There exists the transformation denoted by T' : W* — V* such that the
transformation T and T' satisfies the following conditions.

(a) Im(T") = Ker(T)° (Fig.4.10)
(b) (Im(T))° = Ker(T") (Fig.4.11)

4.3 Direct Sum

Let V1,V2,V3...Vn be the subspaces of the vector space V. The vector V is said to
have direct sum representation (i.e.) V= V1 & V2 & V3 & ... Vn if the following
conditions are satisfied
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Fig. 4.10 Tllustration of the
property Im (Tt) = Ker(T)0

Fig. 4.11 Tllustration of the
property (Im(T)) 0 = Ker(Tt)
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1. Any vector v € V is written uniquely as the summation of the vectors
vl,v2,v3,...vnsuch that vl € V1, v2 € V2, v3 € V3,...vn € Vn.

2. Intersection of the vector space is the zero vector. NVi = {0}.

3. If O is represented as the summation of the vectors belongs to V1,V2,... Vn,
then the vectors collected from the vector spaces V1, V2, ... Vn are 0.

(i) 0=04+0+0+---0

4.4 Transformation Matrix

Consider the Isomorphic Linear transformation T from the vector space V to W.

T: V — W. Let the basis of the vector space V and W are represented as
{vl, v2, v3,...vn} and {wl,w2,w3,...wm} respectively. Linear transformation
T acting on v1 which is represented as T(v1) € W can be represented as the linear
combination of wl,w2,w3..wm as follows

T(vl) = all*wl + «12*W2 + a13 * w3 + ---alm™wm
T(v2) = a21*wl + a22*wW2 + a23 * w3 + ---a2m™wm
T(v3) = a31*wl + a32*w2 + 33 * w3 + ---a3m*wm

T(vn) = anl*wl + an2*w2 + an3 * w3 + ---anm*wm

Consider the arbitrary vector v € V which is represented as the linear combinations
of the basis vectors {v1, v2, v3,...vn}as Bl *vl+ B2%v2+ B3%xv3+...Bn*vn

Tw)=T(Pl xvl+ p2%xv2+ B3 *«v3+---Bn*vn)
Bl =*T(v1) + B2 T(v2) + B3 * T(v3) + ---Bn x T (vn)

= B1*(@11*wl + a12*w2 + a13 * w3 + - --alm™wm)
+B2* (021" w1 + 22" W2 + a23 * w3 ---a2m™wm)
+B3*(a31"wl + a32*W2 + a33 * w3 + ---a3m*wm)
+ ...
+Bn*(anl*wl + an2*w2 + an3 * w3 + - --anm*wm)

= (Bl*all + B2%a21 + B3*a31 + ... Bn*anl)*wl
+(B1*al2 4+ B2%a22 + B3* w32 + ... Bn*an2)* w2
+(B1*al3 + B2%a23 + B3* @33 + ... Bn"an3)*w3
+...
+(B1*alm + B2*a2m + B3*am3m + ... Bn* anm)*wm



4.4 Transformation Matrix 163

The transformed vector T(v) is represented as the linear combinations of the basis
vector (wl, w2, ...wm) with the coefficients as mentioned above.

The scalar coefficients used to represent the vector v using the basis of the vector
space V is given as (81, B2, B3, B4, ... Bn).

Similarly the scalar coefficients used to represent the vector T(v) using the basis
of the vector space W is given as

(Bl sxall + B2xa2l + B3 xa3l +...0n xanl), (Bl xal2 + B2«
a22 4+ B3 xa32+...8nxan2), (Bl xal3 + B2 xa23 + B3 xa33+...P6n %
an3),... (Bl xalm + B2 x a2m + B3 x am3m + ... Bn *x anm))

The scalar coefficients which are used to represent the vector v in the vector space
V is related to the scalar coefficients used to represent the vector T(v) in the vector
space W using the matrix as given below.

all o«21 ... anl
al2 o222 ... an2
alm o2m ... anm

The matrix mentioned above is called transformation matrix which is represented as
B2
(7151

Note that the above transformation matrix is represented with respect to the basis
B1 in the vector space V and the basis B2 in the vector space W.

Trick to obtain the transformation matrix for the linear transformation
T:V->W
Let {vl,v2,...vn} and {w1l,w2,...wn} be the basis of the vector space V and W
respectively.

Obtain the transformation vector corresponding to the individual basis elements
of the vector space V. Let it be {T(v1) T(v2) T(v3)...T(Vn)}.

Represent the transformed vector as the linear combinations of the basis vectors
in the transformed domain W as follows

T(vl) = al1*wl + a12*W2 + 13 * w3 + ---alm*wm
T(v2) = a21*wl + a22*W2 + @23 * w3 + ---a2m ™ wm
T(v3) = a31*wl + a32*w2 + 33 * w3 + ---a3m*wm

T(vn) = anl*wl + an2*w2 + an3 * w3 + ---anm™wm

Form the matrix with first column filled with the scalar coefficients which are used
to represent the transformed vector T(v1) (i.e.) {al11 a12 a13...a1m}. Similarly the
second column is filled up with the scalar coefficients which are used to represent
the transformed vector T(v2) (i.e.) {a21 a22 023 ...a2m}.
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4.5 Similar Matrices

Consider the Isomorphic Linear transformation T : V — V.

Consider the basis B1 = {vy, v,, v3,...v,} with respect to which the transforma-
tion matrix is represented as Tg}. Consider the basis B2 = {uj, u, u3,...u,} with
respect to which the transformation matrix is represented as T53.

The vector u; € V. Hence u; can be written as the linear combinations of the
basis vectors B1 as mentioned below.

ul = ay1vi +az1va +aszivs + ...az1va

In general, u, = a1xv1 + a2nva2 + azpvs + -+ + apvn

x1
x2

Consider the vector [x]py = *3

xn

This indicates that the vector [x] g5 is represented as the linear combinations of
the basis B2 as follows.

XB2 = X1U1 + Xoup + X3uU3 + -+ + Xpliy
= XB2 =X1 * [a11v1 + a21v2 + azvs + -+ anmval+
X2 % [a12v1 + azva +azvs 4+ -+ apovy] + -

Xp ¥ [@1nV1 + A2av2 + azpvi + oo 4 Apnvn

= Xp2 =V1 * [a11X1 + a12X2 + a13X3 + -+ + A1aXp]+
Vo * [a21X1 + A2oXo + a23x3 4+ -+ AzpXp] + -+
Vn * [an1 X1 + anaXa 4+ an3xz + -+ + apXn]+

Thus the vector [x] with reference to the basis B1 is represented as follows

aiixy +apxz +aisxs+ -+ adipnXxn
az1X1 + axXxy + azzxz + -+ azp Xy
[x]p1 = 931X1 + a32X2 +a33X3 + -+ + d3nXp

an1X1 + An2X2 + an3xz + -+ + AunXn
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The vector [x]p; can be rewritten as

all al2 al3 . . aln|xl
a2l a22 a23. . . a2n|x2
a3l a32 a33 . . a3n|x3
[x]B1 =
anl an2 an3 . . ann|xn
all al2 al3 . . aln
a2l a22 a23. . . a2n
a3l a32 a33 . . a3nm
= [x]p1 = [x]B2
anl an2 an3 . . ann
= [x]B1 = [M][x] B2, where
all al2 al3 . . aln
a2l a22 a23. . . a2n
a3l a32 a33 . . a3n
M] =
anl an2 an3 . . ann

Also as the matrix [M] is the invertible matrix
[x]B2 = [M]_l [x]B1.

Consider the vector [x] g2 is transformed to another vector using the transformation
matrix Th3 as [Th5 [x]52] g, With reference to the basis B2.
Consider the vector [x]p» is represented with respect to the basis B1 is given as

[([M][x]B2]B1

The above mentioned vector with respect to the basis B1 is transformed using the
transformation matrix T" g} as

{(TH] [(M][x] 2151} BI

Note that the above vector is with respect to the basis B1. The obtained vector is
represented with respect to the basis B2 as follows

(M~ {[T51] [IM] [x]B2]B1} 5 5, 4.1)
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This must be same as the transformed vector of the vector [x] > obtained using the
transformation matrix 755 which is represented as

as [Tgf [X]Bz]Bz (4.2)
Comparing both the Egs. (1) and (2)
We get T3 = [M]™" [T51] [M]

The matrices T3 and [Th] | are called as similar matrices.
In general, the two matrices A and B are said to be similar matrices, if there exists
the invertible matrix P such that B = [P]™! [4] [P].

4.6 Structure Theorem

The transformation matrix for the particular linear transformation can be written in
different form corresponding to the different basis vectors. Structure theorem deals
with the technique for obtaining the simplest transformation matrix like diagonal
matrix, upper triangular matrix etc. such that computation of the transformation
becomes simpler and faster.

1. Consider the one-one transformation T: V. — W with dim(V) = n and
dim (W) = k, n < k Let {v1l,v2,v3,...vn} be the basis of the vector space V.
{T(v1), T(v2), T(v3)...T(vn)} exists in the vector space W. They are linearly in-
dependent. Extend the set {T(v1), T(v2), T(v3)...T(vn), wn+1,wn+2,...wk}.

The transformation matrix with respect to the above mentioned basis will look
like below.

1 00 0 al,n+1 . al,k
010 0 a2,n+1 . a2,k
001 0 a3,n+1 . a3,k
000 0 a4,n+1 . adk

000O0T1 ann+1 . ank
2. Consider the onto transformation T: V. — W with dim(V) = n and
dim (W) = k, n > k. Let {vl,v2,v3,...vn} be the basis of the vector space V.
{T(v1), T(v2), T(v3)...T(vk)} exists in the vector space W. They are linearly

independent. The transformation matrix associated with the above basis is
given as
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1 00 00.0
010 00.0
001 00.0
000 00.0

0000T1O0.0

3. Consider the isomorphism transformation T: V — W with dim(V) = n
and dim (W) = n. Let {v1,v2,v3,...vn} be the basis of the vector space V.
{T(v1), T(v2), T(v3)...T(vk)} exists in the vector space W. They are linearly in-
dependent. The transformation matrix associated with the above basis is given as

100 .0
010 .0
001 .0
000 0
00O0O01

Note that the columns of the transformation matrix in all the three cases are
obtained using the technique described in the section Trick to obtain the trans-
formation matrix for the linear transformation T: V — W.

(a)

(b)

()

Consider the transformation matrix T which is not of simple form.

Form the polynomial by setting the equation det(T — AI) = 0. The polyno-
mial thus obtained is called characteristic polynomial of the transforma-
tion matrix

The roots of the Characteristic polynomial is called Eigen values. Let it be
M A2 A3 Ag... A Let us consider the characteristic polynomial for the trans-
formation matrix T be p(x) = (x = A1) (x —A2)"2(x —A3)"3(x —A4)™ . ..
(x — An)™*

If p(x) is the characteristic polynomial of the transformation matrix A (as
mentioned above), then p(T) is the zero matrix, where addition and multipli-
cation are performed in the usual matrix operation and the constant term ‘c’
in the polynomial p(A) is represented as cI, where ‘I’ is the identity matrix.
This is called Cayley-Hamilton theorem (i.e.).

p(T) = (T =MD" (T =22D"2(T - 3D (T - D)™ .. (T— nD)* =0

(d)

q

But there can be the polynomial q(x) with lesser degree compared to degree
of p(x) which satisfies the condition q(T) = 0. This polynomial is called
minimal polynomial of the transformation matrix ‘T’ (i.e.).

(T) = (T-M D™ (T-2D™(T-N3)™3(T-M )™ .. (T— D)™ =0
where mk < nkVk
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(e) Consider the minimal polynomial of the transformation matrix ‘T’ is of the
form in which the values of ml = m2 = m3... = mk = 1.

QqT) =T - MDYT -2DT - 3D(T -MD ... (T-wmDl =0

Consider (T — A1 I)v = 0 = T(v) = Alv, the transformed vector T(v) is
the scaled version of the vector v with scaling value A1. The Vector satisfy-
ing the above form is called Eigen vector. The set of all vectors satisfying the
above equation forms the space and are called Eigen space. They are repre-
sented as V1. The basis of such vector space satisfying the above mentioned
conditions are called Eigen basis of the transformation matrix T correspond-
ing to the Eigen value ‘A1°.

Consider the transformation matrix T: V — V. Vector space V is said to
be invariant space if for any vector v € V such that T(v) € V.

Eigen values of the transformation matrix T are A1, A2,A3,...Ak. The
Eigen space corresponding to the Eigen values ‘A1°, ‘A2°, ‘A3’°,...°Alk
are represented as Vy; Via Vs ... Vi respectively. They are individually
the invariant subspace of the vector space V.

Suppose if the dim(V) = n, then dim(V,;, + dim(V,, + dim(V,3; +
ce.edim(V, =n

Let The basis of the vector space Vy; (i.e.) the Eigen vectors be {v11 v12
v13 ... vli}. The basis of the vector space V 55 is given as {v21 v22 v23 ...
v2j}. Similarly the basis of the vector space Vg is represented as
{vkl vk2 vk3 ... vkm}. Then the basis of the vector space V is given
as {vl1vI2v13 ... v1iv21v22v23 ... v2j ... vkl vk2 vk3 ... vkm}.
This indicate that the vector space V is obtained as the direct sum of the
vector spaces Vi1 Vaz Vas ... Vi (.e.)

V=Vui®Vi2® Va3... ® Vi
T(vil) = A vil
T(v12) = M vI2
T(v13) = A vi3

T(vli) = Al vli
T(v21) = A2 v21
T(v22) = A2 v22
T(v23) = A2 v23
T(v2j) = A2 v2j

T(vkl) = Ak vkl
T(vk2) = Ak vk2

T(vkm) = Ak vkm
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The transformation matrix associated with the above mentioned basis is
given as follows.

A0 0 0 O 0 0
0 A 0 0 O 0 O
0 O 0 O
0 O 0 O
0 0 . 0 0
0 0 A0 0 0 0
0 O 0 A2 0 0 O
0 O 0 0 A2 0 O

0
.0
Ak 0

0 000 0 0 00 0 Ak
The transformation matrix is the square matrix. Also the diagonal ele-
ments of the matrix is filled up with the Eigen values [A\1 A1 A1 ... Al ..

A2 A2 A2 ... Ak Ak AK]
(f) Consider the minimal polynomial of the transformation matrix ‘T’

q(T) = (T-M D" (TX2)™(T-A3 )" (T- 4 D)™ .. (T—An D)™ =0
where mk < nk Vk

Also consider the vector satisfying the condition (T —\11)™'v = 0 (i.e.) the vec-
tor ‘v’ € ker((T — A1 1)), The vector v is called as Generalized Eigen vector.
The set of all the vectors satisfying the above condition is called Generalized
Eigen space. The Generalized Eigen space corresponding to the Eigen value
‘A1’ is represented as V(\1).
Consider the arbitrary vector vl; € V(Al). By the definition of minimal
polynomial
(T—ATI)vly #0
= (T—A1Dvl; =vl,
= T(V]]) = )\1\/11 + V12
Also (T =X D?vl; = (T= A I)(T =Xl Dvl; = vi3
= (T— A I)V]z = V13
= T(vlz) = AMvl,y +vls
Similarly
T(V13) = )\.1\/13 + V14
T(V14) = )\.1\/14 + V15
T(vls) = AMvls +vlg

T(vlg) = AMvlg + vly
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Also (T =M D™y, = (T—AM ID(T—-A1D™ 1y, =0
But (T — A D™~y = v,

= (T=AMID)vy =0

= T(Vm1) = M v

Thus the independent vectors {v1yo, Vlpo—1, Vlma—2,Vlma—3, Vlgo—a, Vlmo—s
... vl } forms the basis for the vector space V(A1). They are called Jordon basis
Similarly {v2m2, V2m2—1, V2m2—2, V2m2—-3, V2m2—4, V2m2—5 ... v21} forms the
basis for the vector space V(A2) satisfying the similar conditions as de-
scribed above.

In the same fashion {vkpp, vkpo_1, Vkmo—2, VKma—3, VKma—4, Vkmo—5 ... vky }
forms the basis for the vector space V(Ak) satisfying the similar conditions as
described above.

Thus the set of independent vectors

VImo, Vligo—1, Vim—2Vlmo—3, Vimo—4, Vlmo—s ... V1, V21,
V2m—1,V2m2—2, V2m2—3, V2m2—4, V2ma—5 . . . V21, . . . VKm2, VKmo—1,

Vkma—2, Vkma—3, Vkma—4, Vkma—5 . . . vky } forms the basis of the vector space V.

Suppose the dim(V) = n, then dim(V(A1)) + dim(V(A2)) 4+ dim(V(A3)) +
...dim(V(AK)) =n

This indicate that the vector space V is obtained as the direct sum of the vector
spaces V(A1),V(A2),V(A3),..V(Ak) i.e) V=VAA1DDVA2)BV(A3) ... ®
V(rk)

The transformation matrix with respect to the above mentioned basis is given as

A1 0 0 .000...000O00O

0 A 1 0 000 00O0O0

0 0 A 1 000 0 00O

0 0 0 Al 000 0000

0 0 0 O 000 00O0O0

00O0O0

00O0O0

0000
00O0O0 A2 1. 0 .. . 0 0 O O
0000 0 A2 1 0
0000 . 0O 0 A2 0
.. .0
k10 0
. e 0 Xk 1 O
00O00O0 0 0 0 . . . 0 0 Xk 1

00000 O O O OOO O O 0 Ak
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Note that the matrix is filled up with Eigen values in the diagonal elements.
Also note that upper off diagonal elements are filled up with one or zero.

4.7 Properties of Eigen Space

Consider the transformation matrix T: V — V Suppose for any vectorv € V) C V
such that Tv = Av for some scalar value ‘A\’, then the vector space V; is called
Eigen space. The scalar value ‘)’ is called as Eigen value. The vector satisfying the
above condition is called Generalized Eigen vector. But in practice the basis of the
Generalized Eigen space are referred as Generalized Eigen vector.

1.

Eigen vectors corresponding to distinct Eigen values are independent.

2. The transformation matrix A is Diagonalizable if there exists Eigen vectors

10.

associated with the matrix A forms the basis of the vector space V.

. If the matrix A is diagonalizable, the characteristic polynomial of the matrix A

is represented as (x — A1)™ (x — A2)"2(x — A3)"3(x — M)™ ... (x — An)™,
Where dim(Vy;) = nk.

. The vector space V= Vy1 @ Vi, @ Vyz ... ® Vi (Fig.4.12).
. The minimal polynomial of the diagonalizable matrix will always have the val-

uesnl =n2=n3=...nk = 1.

. If dim(Vy;) = ml < nl, then the transformation matrix is called as deficient

matrix. The value ‘m1’ is called Geometric multiplicity and ‘nl’ is called as
Algebraic multiplicity.

. The kernel ((A—X\i)") = V,;, where n is the dimension of the vector space ‘V’.
. Image ((4 — M)") = EBIJ‘- —1 Vaj> where n is the dimension of the vector space

Vi #i

. Any vector ‘v’ € ‘V’ can be uniquely written as vl + v2, where vl €

kernel((A — Ai)") and v2 € Image((4 — Ai)").
The vector space V can be written as direct sum as given below

kernel ((A — Ai)") & Image ((A — Ai)")

Fig. 4.12 Tllustration of the
direct sum of the Eigen space



172 4 Linear Algebra

4.8 Properties of Generalized Eigen Space

Consider the transformation matrix T: V. — V Suppose for any vector v € V(L) C
V such that (T — AI)kv = 0, where k is the minimal integer satisfying the condition,
then the vector space V() is called as Generalized Eigen space. The scalar value ‘A’
is called as Eigen value. The vector satisfying the above condition is called Eigen
vector. But in practice the basis of the Eigen space are referred as Eigen vectors.

1. (A=), (A—AD2, (A—AD)3, ... (A — AD*! are linearly independent.
2. Generalized Eigen vectors corresponding to distinct Eigen values are distinct.

3. If the minimal polynomial associated with the transformation matrix A is
represented as

(x —AD)™ (x = A2)"?(x — A3)"™3(x — A4)™ .. (x — An)™
dim (V (M 1)) = dim (kernel((4 — X1)™)) = m1
dim (V (A2)) = dim (kernel((4 — A2)"?)) = m2
dim (V (A3)) = dim (kernel((4 — A3)"?)) = m3
dim (V (A)) = dim (kernel((4 — A4)™*)) = m4

dim (V (Ak)) = dim (kernel((4 — Xk)™)) = mk

Also the vector space V= V(A1) & V(A2) & V(A3) ... d V()\k) (Fig.4.13)

4. The kernel ((A—Ai)") = V(Ai), where n is the dimension of the vector space ‘V’.

5. Image((A — M)") = @’j?:l V(}j), where n is the dimension of the vector space
‘V’ and # i.

6. Any vector ‘v’ € ‘V’ can be uniquely written as vl + v2, where vl € kernel
((A—A)™) and v2 € Image((A — Ai)").

7. The vector space V can be written as direct sum as given below

kernel ((4 — Ai)") @ Image ((A — M)")

Fig. 4.13 Tllustration of the
direct sum of the generalized
Eigen space
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4.9 Nilpotent Transformation

o

N AW

Fig. 4.14 Illustration
of the Nilpotent property 7

. The Matrix A is said to be Nilpotent, if 3 the minimum integer k such that

Ak =o.

Consider the Linear transformation A: V — V such that A is the Nilpotent matrix
is called Nilpotent Transformation.

If 0 is the only Eigen value of A, then A is Nilpotent.

‘0’ is the only Eigen value of the Nilpotent matrix.

Maximum possible value for k is ‘n’, where ‘n’ is the dim(A).

If A is Nilpotent and diagonalizable, then A = 0.

If Vi = ker(4"). Vi C Vigy

Letv; € V; = ker(A")(i.e)A'v; =0
ATy = A(Av) = A(0) =0

= v; is the ker (A" 1)

=V, CViqa

Note_ that there can be the vector v; which is the kernel of A’*!, but not the kernel
of A’, but not the kernel of A" (Fig.4.14).

ochicVhcVsC---Ve=V

CIf Vi =ker(A'),AV; C Vi,

Letv; € V; = ker(A))(i.e.)A'v; =0
= A4y, =0
= Av; is in the kernel of V;_;
= AV; C Vi

A is Nilpotent, 3 the matrix associated with A which is strictly upper triangular
(Fig.4.15).
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Fig. 4.15 Tllustration
of the Nilpotent property 9

Consider the basis of the V1 as {vi1vi2vi3...Vimi}
Extend the basis of V; to the basis of V5 as

{V11V12V13 - .. Vim1 V21V22V23 - .. Vam2
Similarly extend the basis of Vk — 1 to the basis of Vk as

{V11Vi2V13 o Viml V21V22V23 o Vam2 - - VELVE2VES - - - Vienk)

The matrix corresponding to the above basis is strictly upper triangular matrix as
shown below.

AV]] =0
AV12 =0
Avim =0

=> First m1 columns of the transformation matrix corresponding to the above basis
is completely filled up with zeros

AV21 ?
AVo, C Vo =W

Va1 € Vz

= v, can be written as the linear combinations of the basis of V;
{v11v12V13 ... V1im1}. Let the coefficient elements are {oi110120013%14 . . . A1zl }-
Similarly v,,,» can be written as the linear combinations of the basis of V;
{v11v12V13 - .. vim1}- Let the coefficient elements are represented as {021 0m22

Um230Um24 - - - Cm2m1 §-
Consider the representation of Avsj.

AV3 C V31 =1,
v31 € V3

= v31 can be written as the linear combinations of the basis of 1),
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{V11V12V13 - . . Vim1V21V22V23 . . . Vam2 }- Let the coefficient elements are {$11P12

B13BI4 <o BlmZ}

Similarly vs,,3 can be written as the linear combinations of the basis of V;

11v12v13 .. Viml V21V22V23 .. Vam2 )
{Bm31Bm32Bm33Bm34 - - . Bmamz}
Similarly the Transformation acting on the other basis vectors are represented as

the linear combinations of the basis vectors. Thus the transformation matrix corre-
sponding to the above basis vectors is as shown below.

0 0 oy . . w2t - . P o Bma
0 0 . am22 - - Bz . Pman
0 0 o1m Bis . PBmss
0 0 0 . Bia . PBmsa
0 0 0 0o . . Bis

0 0 0 0 0 amom .

0 0 0 0 0 0 .

0 0 0 0 0 0 o .

0 0 0 0 0 0 0 0 PBim

0 0 0 0 0 0 0 0 0 . .

0 0 0 0 0 0 0 0 0 0 Bmsmz
0 0 0 0 0 0 0 0 0 0 0

4.10 Polynomial

Consider the polynomial P(x) is factored and written as the product of the polyno-
mials as p(x) = pl(X)p2(x)p3(x)p4(x)...pk(x) and consider the linear transfor-
mation matrix A: V — V. Note that p(A) is matrix obtained using the polynomial
p(x),where addition and multiplication are performed in the usual matrix operation
and the constant term ‘c’ in the polynomial p(A) is represented as cI, where ‘I’ is
the identity matrix.

1. kernel (p(A)) = @ kernel(pi(A)).
2. The set of polynomials q1(x)q2(x), q3(x). .. qgk(x) are defined as follows:

ql(x) = p2(x)p3(x) ... pk(x)
q2(x) = pl(x)p3(x) ... pk(x)

gk(x) = pl(x)p2(x)...pk — 1(x)

They are relatively prime.
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3. Statement 2 implies there exists another set of vectors f1(x), f2(x), . . . fk(x) such
that f1(x)ql(x) + f2(x)q2(x) + ... fk(x)gk(x) = 1.

4. There exists the polynomial acting on some vector v € ker(p(A)),gives the vector
vi € ker (pi(A)), for all i varies from 1 to k.

5. That polynomial is given as follows:
q1(A)f1(A) is the polynomial when acted on the vector v € ker (p(A)), gives the
vector vl € ker (p1(A))

6. In general, qi(A)fi(A) is the polynomial when acted on the vector v € ker(p(A)),
gives the vector vi € ker(pi(A)).

Note: The polynomial properties mentioned above can be compared with the
minimal polynomial properties.

4.11 Inner Product Space

Consider the vector space V over the field F. Inner product over the vector space V is
defined as the map from VXV to F satisfying the following axioms. It is represented
as < V,V >. Note that VXV is the vector space with first element

. <v,v>#0whereveV
If<v,v>=0thenv=0
2. <vVv,wH+u>=<v,w>+ <v,u>whereu,veV
3. <cv,w > c < vVv,w > where c is the scalar constant.
4. <v,w>=<w,v >, where < w,v >, is called as conjugate

=S<v,ew>=Cc <w,v >

The vector space V with the with the defined inner product forms the Inner prod-
uct space.

Examples for the inner product space

1. Consider the vector space R?. Consider two arbitrary vectors vl = (al,a2) €
R?, and v2 = (b1,b2) €7 R2, then the inner product defined in the vector space
V as < vl,v2 >= qalbl + a2b2. Thus the vector space R> with the above
defined inner product forms the inner product space.

2. Consider the vector space R™". Consider the arbitrary vector B € R™", the inner
product is defined as < A, B > trace(AB™), B*, is the conjugate of the matrix B.
Thus the vector space R™ for the above defined inner product forms the inner
product space.

3. Consider the vector space consists of the set of all complex valued functions
defined for the interval (0,1] with the inner product defined as follows:

1
<f, g>= f f(t)g(t)dt forms the inner product space.
0
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Formation of Inner product space for the vector space V
Consider the n-dimensional vectors space V. Let the basis of the vector basis be
represented as {v1, v2, v3...vn}.

There exists the transformation A: V. — V such that Avl = el,Av2 =
e2,...Avn = en, where ‘ei’ is the vector with n elements completely filled up
with zeros except ith element which is filled up with 1.el,e2,e3,...en are called as
standard basis of the vector space R".

The Inner product of the vectors u, v € V represented as < v,u > is defined as
follows.

Letv =al*vl +a2*v2 + a3*v3 +...an*vn
u=Pp1%v1 +p2*v2 + B3*v3 +...An*vn
<V, u>= alB_l+a2@+a3B_3+u4@...+unﬁ

Norm of the vector v is denoted as follows ||v|| = /< v,v >
Properties of the norm

L e, ull = leffull

2. |jull >0

3. Cauchy-Schwarz inequality | < u,v > | < |lu| ||v|
A+l = Qull 4 vl

5. | <v,u>|>Re(<v,u>)

NN

4.12 Orthogonal Basis

1. Consider the inner product vector space V. Let u, v € V. The vector ‘u’ is
orthogonal to the vector ‘v’ if the inner product < u,v >= 0.

2. The set of vectors {v1,v2,... vk} are orthogonal set if < vi, vj >= 0, where
i#jandi, j=1,2,.k

3. The set of orthogonal vectors are always linearly independent.

4. If the set of Orthogonal vectors {v1,v2,...vk} with |vi| = 1, i = 1.k are
called as orthonormal vectors.

5. If the set of orthogonal vectors are {v1,v2, ... vk}, then the set of orthonormal
vectors are obtained as {m ”35” Y. ﬁ}

6. If the set of orthogonal vectors forms the basis of the vector space V, they are
called orthogonal basis.

7. If {vl,v2,v3,...vn} forms the basis of the vector space V, then there exists the
set of vectors {ul,u2,u3,...un} which is the orthonormal set which forms the
basis of the vector space ‘V’, which are obtained using Gram-Schmidt orthog-
onalization procedure as given below.

vl !
=u
[vi]l

s
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v2 = v2— < v2,ul > ul

v2
2=
[[v2/]l
v3 =v3— <v3,ul >ul— < v3,u2 > u2
v3/
3=
[[v3/]l

and so on.

8. Set of all vectors in the vector space V which are orthogonal to the set of vectors
of the subspace S C V is the vector space represented as S

9. If the dimension of the vector space S is k, then the dimension of the vector
space St is n — k, where n is the dimension of the vector space ‘V’ (Fig.4.16).

10. If the basis of the space S is {w1,ws,...wr_1, wg } and the basis of the vector

space Stis {Wk+1> Wk+2,..-Wn—1, Wn}, then the basis of the vector space V
is given as {wi, wa, ... Wig—1, Wk, Wk+1, Wk+2, -+ - Wn—1, Wn}-

(e)V=S@st

11. The basis are orthogonal to each other between the space S and st.
12. Any vector v € V can be uniquely written as vl + v2, where vl € S and

v2 e St
13. Any vector v € V can be written as the linear combinations of the
14. Orthonormal basis vectors {v1,v2,v3,... vn} as a;vl + av2 + a3v3 +

...0u VN, where

o is computed as < v, vl > .
Similarly ap =< v,v2 >

o3 =< V,v3 >

o4 =< V,v4 >

In general oy =< v, vk >

Fig. 4.16 Illustration
of the vector space S and its
orthogonal complement S*
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4.13 Riegtz Representation

Consider the Linear transformation T: V. — F, where the vector space V with
dimension ‘n’. There exists unique vector y € V such that T(v) =< v,y >

Technique to obtain the vectory € V
Find the kernel(T) = W
Find the W.

Find any orthonormal vector u € W+
Compute T(u)

A S

The vectory = T(u) u

Example 4.1. Consider the transformation
A:R" > R
A(R™) = A([x1x2x3 ...xn])
=Q1X1 + X2 +a3x3+ ...+ auXxp
=< (X1X2X3 ... X,), (102 ... ay) >

=a1X1 + X2 +a3x3 + ...+ apXp

Where y = (@13 . .. o) is the unique vector € R”.



Chapter 5
Optimization

5.1 Constrained Optimization

Consider the function f(x,y) = 2x2 + 4y + 3. The requirement is to find out the
optimal values for ‘x’ and ‘y’ such that f(x, y) is minimized. Also it has to satisfy
the constraint that g(x, y) = x 4+ y + 3 = 0. Let the local extremum (maximum or
minimum) point be (xg, Vo).

The curve x 4+ y + 3 = 0 can be viewed as the set of points (¢,3—a), Vo € R.
This is known as parametric representation of the curve. The tangent vector at the

point (xg, y,) points towards the direction (Z—g %) = [1 — 1]. Also the gra-

dy
the gradient vector and the tangent vector is always orthogonal to each other (see

Fig.5.1).

The solution of the above optimization problem lies on the intersection of the
curve g(x, y) and f(x,y) So consider the points on the curve g(x, y) represented
in the parametric form as g(x(«), y(«)) = gl(a). Let the optimal point (xg, y,)
be represented in terms of the variable ‘a’ as «g. Note that the point lies on the
curve f(x,y). The function f(x,y) can be represented as the function of ‘e’ for
the points of intersection of the curves g(x, y) and f(x, y) as f1(x)

Using Taylor series,

A(x+y+3)
dient vector of the equation g(x, y) is obtained as a(x4a-)§+3) = |:1] Note that

df1(ag) . o* d?f1(ao)
d + 21 do?
df1(ag) | @*d? f1(ao)
d + 20 da?

Sl +ap) = fl(ao) +

= fl(a+ao) = fl(x) =«

f1(ag) corresponds to local extremum and hence f1(o + ag) — f1(p) must be
greater than O if the point «g is local minima, or it must be lesser than 0 if the
point ¢ is local maxima. Also «¢ can be either positive or negative value. Thus the
condition that g belongs to the local extremum is % = 0. Also note that if

E.S. Gopi, Mathematical Summary for Digital Signal Processing 181
Applications with Matlab, DOI 10.1007/978-90-481-3747-3_5,
(© Springer Science+Business Media B.V. 2010
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x2
X+y+3=0

Fig. 5.1 Illustration of the property that the gradient vector is orthogonal to the tangent vector

Fig. 5.2 Illustration of the X
functional dependencies

. . 2 . . .
the extremum is maxima, then % must be negative and if the extremum is

.. 2 . ..
minima, then % 18 positive.
Thus the condition that the point oy belongs to extremum is % = 0 (Fig.5.2)

Sl ao) = f(x(ao).y(x0))

N dfl(xo) _ df(x(a0).y(@0)) _ df(x(e),y(a))
do do do

Using the illustration of functional dependencies as shown above, we get the
following

at a = ayp

df (x(a), y(a)) _ o _ 4 de df dy
do (ma_a())_dx*doe dy*da_o
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dx
df df 1| Ja
:[ad—y] ﬂ (atax=a9)=0
da
af
The vector |:Z_jf:| is the gradient vector of the curve f(x, y) at the point ¢ = .
dy

dx

Also ‘23‘ at @ = «y is the direction of the tangent vector on the point ¢ = ¢y of

the cur\‘fig g(x, y). [This is because of the fact that the set of points ((x(«), y(«)) are
the set of parametric representation of the points on the curve g(x, y). Thus from the
above statement, the gradient vector of the curve f(x, y) at the point (x (), y (o))
is orthogonal to the direction of the tangent vector drawn at the point (x (o), y(®))
on the curve g(x, y).

We have already shown that the gradient vector of the curve g(x, y) at the point
(x(c0), y(ap)) and the direction of the tangent vector of the curve g(x, y) at the
point (x(ag), y(cg)) are orthogonal to each other.

This implies that the gradient vector of the curve f(x, y) and the gradient vector
of the curve g(x, y) are parallel to each other and hence for some scalar ‘A’, which
is known as Lagrange multiplier,

Gradient vector of the curve f(x,y) + A* Gradient vector of the curve

g(x,y)=0.
df

Gradient vector of the curve f(x,y) is represented as V f = |:Z;:| Similarly
dy

dg

dg
the gradient vector of the curve g(x, y) is represented as Vg = |: :|
dy

= Vf +AVg=0

In our problem Vf = |:4:i| and Vg = |:i:| There fore from above

|:4:i| +A |:{| = 0. Solving gives A = —4 and x = 4/4 = 1. Also we know

x+y+3=0.
=>y=—x—-3=-1-3=—-4.

Thus the optimal solution for computing the extremum of the function f(x, y) =
2x2 +4y + 3 is obtained as (1, —4) and the corresponding value is 2-16+3 = —11.
But to test whether the obtained extremum is maximum or minimum is decided
using the second derivative as shown below.

We have already shown that Waz(at o = agp) > 0, where fl(a) =
f(x (), y(a)) if the extremum point @ = g is minima point.



184 5 Optimization

Using the functional dependencies as shown in the Fig.5.2, WQZ is
computed as shown below.

dfl _ 9f ox | 3f dy
Jo  9x da + By e = p(x(a).y(@))

i@ _ () _dpe@.s@) oo apay

do? da da T oxda 0y da
af dx  af dy af ox  af dy
g(L Y gL
_ Ox (ax 8a+3y 805) dy (Bx Boe+8y oo
T o 0x do ady

_Ox 9%\ ox n ox df [ 9%x L0 82f
T O \ 9x2 Boe do dx \ dx0a 805 Axdy 8
ox 0 dy (9? dy d
L ox af LYoy Oy aif
Boz 8y Bxaoz do 8y 8a do By 8a3y
021\ 0 dy 0
+ /) ox L af
Boz dyox By dor dx Byaoz

Pry P rox 92x
_[ox oy 0x2 0y0x | | 9o n af U 1| 92
|0 O 0f 0f Q ax dy || 9%y

dyox 3y_2 da 302

Thus to satisfy the condition %(at a=uay) >0

(ﬁ) f dx 9x
dx  dy 0x2 dWyox | | 54 af  af | 9a2
- = - L = 0
|:8a Bozj| 0%f 0%f ay + dx dy (@t a = ao) >

dydx 9y? dot 302
Note that 3" o

o = agp on the curve g(x, y) and hence the point lies on the tangent vector drawn
on the curve g(x, y) at the point @ = op.

Also A % = 0 at(at @ = ay).

Expanding in the similar fashion as described above, it can be shown that

] (at o = ap) is the direction of tangent vector drawn at the point

(52) ]| [ .
ax 9y | \ox2) dyox | | 9a dg 927 | 9a2
M — = M= = ta = =0
|:Boe 805] Pg g ||y T dyy ]| &y (ar & = ao)
dydx  Jy? do dar2
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Adding both the equation, we get

2F\ 2F T ox g\ g7 rox
[% Q] (@) dyox | | da +)\|:% ﬂ] (W)@ o
da oo || 0 f || oy do B || g %g ||y
dyox 0y? 1 Lo dyox 9y? 1 Lo
9%x 92x
af Af 7| a2 dg 98| 92
[ il o | ]| oy | om0
oo el

We have already shown that

a
ax dy dx dy
and hence we get the following condition.
32 2 2 2
TIN o (L8) 2L 4, 08 rox
ox dy dx2 dx2 ) dydx dyox E
- =z (ata =0p) >0
do O Pf o, e Pf P || D
dydx dyox 8y_2 3y_2 dot

In practice representing the function g(x, y) in parametric form is not easy like
the one used in the example. But the point [g—z S—Z] always lies on the tangent of
the curve g(x,y) drawn at the point (xg, yo) and hence to confirm whether the

obtained point is minima, we have to test whether the modified Hessian matrix

2 f 92g 92 f 2g

(Bx_z) + A (ax_2) dyox + >\’3y8x

82f 32g 32f 32g

dydx + >\(‘)yax y2 3y2

the tangent of the curve g(x, y) drawn at the point (xg, Vo).
The modified Hessian matrix to be tested is given as

a2f  d df  d%
dx? d® dxdy < dxdy

a2f  d dPf d%

dydx dxdy  dy? di?

T4+ (=4 %0 0+0] _[4 0] _
_[0+(—4)*0 0+0]_[0 o]‘A(S“y)

is positive definite restricted to the points on

with A = —4, as found earlier

The obtained optimal solution x = 1,y = —4 (described earlier) corresponds to
the minimal point if the modified Hessian matrix (A) as shown above is the positive
definite restricted to the points on the tangent drawn on the curve g(x, y) at the
point (1, —4).
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The equation of the tangent drawn on the curve g(x, y) at the point (1, —4) is
obtained as the set of points (z1, z2) satisfying the condition Vg7 [z1—1 z2+4] = 0.
Note that Vg7 is computed at (1, —4).

For the function g(x, y) = x+y+3 = 0, the gradient vector at the point (1, —4)

is found as follows.
T
g

ax | _ |1

g 1

dy
Therefore the equation of the tangent drawn at the point (1, —4) on the curve
g(x,y) = x + y + 3 = 0is obtained as [ij| [(1-1224+4]=z1+422+3=0.

The set of points (v, —3—v)V v € R is the parametric representation of the above
equation that lies on the tangent drawn on the curve g(x, y) at (1, —4).

Also, the matrix A is said to be positive definite restricted to the points that lies
on the tangent drawn on the curve g(x, y) at the point (1, —4). if uT Au > 0, Yu €
points as described above.

ul Au = v —3—-v] |:g 8] |:_3V_vi| =[4v 0] |:_3V_Vi| =472

which is greater than or equal to zero and hence the point obtained is the saddle
point.

5.2 Extension to Constrained Optimization Technique
to Higher Dimensional Space with Multiple Constraints

In general the problem discussed above can be extended to more than two variables
and more than one constraints as shown below.
Minimize f([x] x2 x3...xn]), subject to the constraints

f(x1x2x3...xn]) g2([x1x2x3...xn]) =0...gm([x1x2x3...xn]) = 0.

Create the Lagrangean function
L(f.gl.g2,83)
= f([x1x2x3...xn]) + L1g1([x1 x2x3...xn])
FA2g2([x1x2x3...xn]) + ... Amgm([x1 x2x3 ... xn])

Differentiating the above equation with respect to x1 x2 x3...xn,A1,42,...An
and equate to zero gives the extremum point (xg1 Xo2 Xo3 . .. Xon) (say).
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The above set of equations can also be obtained using the following equation
A

Az

Am
Modified Hessian matrix is used to test whether the obtained extremum point

thus obtained is minimum or not as shown below.
The Modified Hessian matrix is as shown in below

[ d*f d*g d’g, d’g; d*f d*g, d*g d*gs

+ 1 + 1 + 1 > + 1 + 1 + 1 -

dx|2 : dx|2 2 d)C]z 3 d)C]z dX1X2 ldxle zdxlxz 3dx1xz
d? d? d? d? d? d? d? d?

S 4, e 478 i £ j;+)»1 g21 i g22+)t3 g23
dxle dxle dx1x1 dxlxl d)Cz de de de
d? d? d? d? d? d? d? d?

S/ : g1 5 82 &3 S/ + 4 81 + 2 82 + s 83

L dx,, x; dx, x dx, x1 dx, x4 dx, x, dx, x, dx, x, dx, x,
dzf dzgl d2g2 d2g3 ]
A A

dxix, ldxlxn + 2dxlxn + 3dxlxn

d*f d*g, d*g d*g;

A A A -

dx) x, + ldxzx,, + 2dx3x,, + 3dx,,x,,

d’f d*g d*g d’g;

A A A =
wr M TR TR

If the Modified Hessian matrix as mentioned above is positive definite restricted
to the points on the tangent plane P as defined below.

Tangent plane ‘P’ drawn at the optimal point (xo1 Xo2 X3 - - - X0, ) on the surface
defined by the equations g1(x1, x2,..xn), g2(x1,x2,..xn) and g3(x1, x2,..xn) is
defined as the set of points ‘y’ satisfying the equation.

Xo1
X02
X03
X04

[Vg1 Vg Vg7 (computed at [xg1  X02 X03 ... Xon]) Y-

Example 5.1. Minimize the function f(x1,x2,x3) = 2x12 + 4% x2 + 2 % x3 + 2.
Subject to the constraint gl(x1,x2,x3) = x1 + x2 —4 = 0, g2(x1,x2,x3) =
xI+x3-5=0
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A
Ay
Vf + [Va1Vg2... Vgiml =0
Am
C4x1 R
=4 [+]|10 [Al}_o
2 R

_4x1+)t1+/12=0
= 44+A1+21,=0
24+, =0

Solving the above equation gives A, = —2,1; = =2, x1 = 1,x2=3,x3 =4
The optimum value is (1,3,4) and the corresponding function value is 24.
To test whether the obtained solution is minima or not is done using modified

Hessian matrix as given below.
4 00
000
000

The optimal point thus obtained is minima if the modified Hessian matrix obtained is
positive definite restricted to the points on the tangent plane of the surface defined by
the equation g1(x1,x2,x3) = x1+x2—4 =0, g2(x1,x2,x3) = x14+x3-5=0
The equation of the tangent as described above is obtained as follows.

yl—1
Vgl Vg2]T [y2—3|=0
y3—4
yl—1
[ e-s| =0
y3—4
_fr 1o y12 T4
1o 1?7 s
y3
yi+y2=4
yl+y3=5

Letyl=a y2=4—-—aandy3=5—-«
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Thus the tangent plane is defined as the vector space that is spanned by the
column vectors as described below.

o
4—o|,VaeR
5—«

4 00
To check whether the matrix | 0 0 0 | is negative definite restricted to the vector
000

o
of the form | 4 — « | is tested as described below.
5—«

4 00 o
@ 4—a 5—a]|0 0 O||4—a|=40>>0YVaeR
000]|[5-«

Hence the obtained extremal point is the saddle point.

5.3 Positive Definite Test of the Modified Hessian Matrix
Using Eigen Value Computation

If all the Eigen values of the matrix modified Hessian matrix computed at the
extremum point are positive, the matrix is said to be positive definite matrix and
the corresponding extremum point is minima. If all the Eigen values of the matrix
modified Hessian matrix computed at the extremum point are negative, the matrix
is said to be Negative definite and the corresponding extremum point belongs to
maxima.

al a2 a3

Proof. As Hessian matrix A = | a2 a4 a5 | (say) is the symmetric matrix, it is
a3 a5 a6

diagonalizable (i.e.) the matrix can be represented as A = EDE™ . Also the Eigen

values of the matrix A are real numbers and the Eigen vectors are orthonormal to
each other. (Refer Chapter 4)
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al a2 a3| | xl
[x1 x2 x3] | a2 a4 a5||x2
a3 a5 a6 | x3
ell e21 e31 M 0 0 ell el2 el3 x1
= [x1 x2 x3] | €12 €22 e32 0 X O e2l e22 e23| | x2
el3 e23 e33 0 0 X3 e31 e32 e33 x3
= A (x1 xell + x2 % el2 4 x3 x el3)?
+ho(x1 % €21 + x2 % €22 + x3 * €23)?
+h3(x1 k€31 + x2 % €32 + x3 % 33)?

Thus to test whether the matrix A is positive definite, the requirement is

M(xl % ell + x2 % el2 + x3 * e13)? 4+ ha(x1 * €21 + x2 % €22 + x3 % €23)?
+h3(x1 *xe31 + x2 % e32 + x3 % e33)% > 0

This implies all the Eigen values should be greater than zero.

Example 5.2. Consider the problem of minimizing the function f(x,y) = 2x2 +
4y + 3 subject to the constraint g(x,y) = x +y +3 =0.

We have already shown that the extremal point is (1, —4) with respect to the
xy co-ordinate system. Now shifted co-ordinate system PQ co-ordinate system is
framed such that the extremal point is (0,0) with respect to the new co-ordinate
system.

=>P=X-1,Q=Y+4

Thus the function g(x,y) = x + y + 3 = 0 is rewritten with respect to the new
co-ordinate system as shown below.

u(p,q) =p+14+qg—-4+3=0
= uP.q) =p+q=0
The parametric representation of the above equation is represented as the set of

points of the form (8, —f). The equation of the tangent plane with respect to the
new co-ordinate system is the set of points y = [y1 y2]7 such that Vu” y =0

S [;ﬂ —0.

In other words the set of points describing the tangent plane is in the Null space of

the matrix [1 1], which is the represented as |: « i| where a € R.
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The Modified Hessian matrix is found at the point (0,0) with the new co-ordinate
system and is displayed below. The equation f(x, y) = 2x2+4y+3 in the modified
co-ordinate system is given as

v(p,q)=2*(p+1)2+4*(q+5)+30r
=2(p2+142p)+4q+20+3a=2p*> +4p +4p +25

Modified Hessian matrix is |:g 8:| (Note that the value of A = —4 which is same as

the one calculated with the previous co-ordinate system). To test whether the above
Hessian matrix is positive definite or not restricted to the tangent plane as described
above is as shown below.
4 0| o . . .
[@ —a] |: 0 0] |: i| = 402 > 0 and hence the extremal point obtained is the
—o
indeterminate point.

Trick to test whether the Hessian matrix ‘H’ is positive definite restricted to the
points on the tangent plane as described above.

Any vector in the tangent plane can be represented as the linear combinations of
the basis of the Null space of the matrix VuT (see above). The Eigen basis vector
E1,E2,E3 (say) are arranged in column form to obtain Eigen matrix E. Any vector in
the tangent plane space can be represented as the linear combinations of the Eigen

vectors as described below. Thus [E1 E2] |:p ;] is the arbitrary point in the tangent
p

plane as described above.
Thus the Hessian matrix H is positive definite restricted to the points on the

tangent plane (as described above) if [p1 p2]ET HE |:p;:| > 0Vpl, p2 e R.
p

Thus if the Eigen values of the matrix ET HE is greater than 0, the matrix is
positive definite matrix.

1
In the above example, Eigen values of the matrix [[% —%] [3 8} |: «f% :| =
V2

[2] shave to be found. The Eigen value is positive and hence the Extremum point
obtained is minimum.

Example 5.3. Consider the problem described in Example 5.1.
Minimize the function f(x1,x2,x3) = 2x12+4%x2+2#*x3+2. Subject to the
constraint gl (x1,x2,x3) = x14+x2—-4 =0, g2(x1,x2,x3) =x1+x3-5=0.
The optimal point is obtained as (1,3,4) with respect to the co-ordinate system
(x1, x2, x3). The modified co-ordinate system (z1, z2, z3) is obtained as z1=x1—1;
2=x2-3;, 723 =x3—4;
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The Modified equations corresponding to the functions g1, g2, and f are ul, u2
and v respectively which are displayed below

ul(z1,22,23) =z1+14+224+3—-4=0=z14+22=0

u2(z1,22,23) =z1+ 1 +283+4-5=0=2z14+23=0

v(zl1,22,23) =2(z1 + D2 + 4% (24+3) + 2% (3 +4) +2
=2(z17 +142z1) + 42+ 12423 +8 +2
= 2712 4 471 + 422 + 223 + 24

The Modified Hesian matrix ‘H’ at the point (0,0,0) with respect to the modified co-

4 00

ordinate system is given below. | 0 0 0 [. (Note that the value of A1 = —2 and
000

A2 = —2, which are same as that of the one calculated with the previous co-ordinate

system).

The Equation of the tangent plane passing through the point (0,0,0) in the new
co-ordinate system is described as the set of points (p,q,r) satisfies the following
condition.

[Vgl vg2)T =0

p
110
:[101}3_0

The set of points on the tangent plane is given as the null space of the matrix

G ST

.
110 @
|:] 0 ]:|. The Eigen basis of the null space is represented as B = _Tg
V3
4 00 1

The Eigen value of the matrix ETHE =[1 —1 —1]|0 0 0| |—1| = [4]
00 0] -1

is 4 which is greater than zero and hence the obtained minima point is the min-
ima point.

Example 5.4. Maximize the function x;x» 4+ X2x3 + X x3.subject to the constraint
X1+ X2 + x3 = 3.

The Lagrangean function is obtained as xyx; + x2x3 + x1x3 + A(x1 + x2 +
X3 — 3) =0.

The following set of equations are obtained by computing by differentiating the
Lagrangean function with respect to (x1, x2, x3, 1) and equate to zero.
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X24+x34+A=0;x1+x34+A=0x1+x2+A=0x1+x2+x3=3

Solving the above equation gives A = —2,x; = x, = x3 = 1

The modified co-ordinate system (z1,z1,z1) are obtained as z; = x; — 1;25 =
X2 — 1;Z3 = X3 — 1.

The modified equation corresponding to f and g is as shown below.

v(z1,22,23) = (21 + D@2+ 1) + (22 + D(zz + 1) + (z1 + Dz + 1)
=12+t t+at+tz+zz+3
wzi, . z3)=u+1l+zn+l+um+l=u0+22+23+3=0

The Modified Hessian matrix at (0,0,0) in the new co-ordinate system is computed
011

as (1 0 1
110
The Equation of the tangent plane with the modified co-ordinate system is set of
p
points (p, ¢, r) satisfying the condition Vu” | ¢ | =0
r

This implies the set of points form the null space of the matrix [1 1 1]
—0.5774 —0.5774
The basis of the null space of the matrix [1 1 1]is givenas | 0.7887 —0.2113 |.

—0.2113 07887

—0.5774 —0.57747" [0

The Eigen values of the matrix 0.7887 —0.2113
—0.2113 07887

—0.5774 —0.5774 1 o

0.7887 —0.2113| = |:0 _1] are given as —1 and —1 which are less

—0.2113 07887
than zero and hence the obtained extremum point is the maxima point.

5.4 Constrained Optimization with Complex Numbers

Consider the problem of minimizing the function f(x1,x2,x3) where x1,x2,
x3 € C subject to the constraint

g(x1,x2,x3) = 0,where x1,x2,x3 € C

The problem can be viewed as maximizing both real and imaginary part of the func-
tion. Hence the Lagrangean function is given as

f(x1,x2,x3) + Ag(x1,x2,x3)
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The equation can be written as below treating the complex Lagrange multiplier
definedas A = Ay +jAs.

f(x1,x2,x3) + Re (Ag(x1,x2,x3)) =0

Differentiating the above equation with respect to x1, x2, x3 and \ and equate to
zero gives the extremal point for the above problem.

Note: Differentiation of the function with respect the complex number is defined
as shown below.

0 1 0 ny d d d 1 d o0
—_— = = and — = — —
ox1 2 \ dx11 J 0x12 dxl 2 \ 0x11 J 0x12
Properties of the complex differentiation
ox1
—_ = 0
ox1
|
ox1
I(AH x1
(—_X) = 0
ox1
(AT x1)
ox1
B(ZHA) .
z
dRe(z4)
z

1.

=A

A

A

ISTE

5.5 Dual Optimization Problem

Consider the problem of minimizing the function f(x1, x2, x3), subject to the con-
straint gl(x1,x2,x3) = 0. Framing the Lagrange equation we get, L(X,A) =
f(x1,x2,x3) + Agl(x1, x2, x3). Differentiate the above equation with respect to
x1,x2,x3, A and equate to zero. Solve for x1, x2, x3 in terms A and substitute in
the equation L(X, A) to obtain the function /4(1). Thus function thus obtained is
called dual optimization problem for the above mentioned constrained optimization
problem. Thus the Dual problem is as shown below.

Maximize the function /#(A) without constraints. (i.e.) Unconstrained optimiza-
tion problem.

Example 5.5. Consider the problem of minimizing the function f(x1,x2,x3) =
x1x2 4+ x2x3 4+ x3x1 + x1x2x3 — 4 = 0. Subject to the following constraints
gl(x1,x2,x3) =x1+x2+x3-3=0.
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Framing the Lagrange equation we get
L(X,A) = x1x2 + x2x3 + x3x1 + x1x2x3 —4 4+ A(x1 + x2 + x3 —3)

Differentiating the above equation with respect to x1, x2, x3 and equate to zero and
solving for x1, x2, x3 in terms of A, we get

11 11
xl = 5—5(7+ZA)%,x2= 5—5(7+2A)%,x3=2+(7+2x)1/2

Substituting the above equation in the Lagrange equation L (X, 1), we get the Dual
problem Maximizing the (% -1+ 2/1)%) ( -2+ 2/1)%) without any con-
straints. (i.e.)Unconstrained optimization.

1
2

5.6 Kuhn-Tucker Conditions

Consider the optimization problem as shown below.
Minimize the function f(x1, x2, x3). Subject to the constraints that

gl(x1,x2,x3) =0g2(x1,x2,x3) =0hl(x1,x2,x2) <0
h2(x1,x2,x3) <0

The Lagrangean function is framed with the Lagrangean multipliers A1, A2, (1, 2
as shown below.

f(xl,x2,x3) + A1g1(x1, x2,x3) + Aog2(x1, x2,x3)
41 hl(x1,x2,x3) + u2h2(x1,x2,x3) =0

Differentiating the above equation with respect x1, x2, x3 and equate to zero to
obtain the three equations. Also, The Lagrange multiplier used for inequality con-
straints satisfies the following conditions

w1 hl(x1,x2,x3) + u2h2(x1,x2,x3) =0
M1 =0,u2=>0
Along with this, the two equations g1(x1, x2, x3) = 0 g2(x1, x2, x3) = 0 are used

to obtain the extremal point.1

Example 5.6. Minimize the function
f(x1,x2,x3) = x1x2 4+ x2x3 + x3x1 + x1x2x3 — 4 = 0. Subject to the
following constraints gl (x1,x2,x3) = x1 +x24+x3-3=0

hl(x1,x2,x3) = x1 —x2—x3 <0,h2(x1,x2,x3) =x1 +x2—-2x3 <0



196 5 Optimization
Construct the Lagrangean function

x1x2 4+ x2x3 + x3x1 + x1x2x3 + A1 (x1 + x2 + x3—4)
+ur(xl = x2—x3) + pa(x1 +x24+2x3) =0

Differentiating with respect to x1, x2, x3 and equate to zero, the following equations
are obtained

X2+ x34+x2x3+ A1+ pu1+u2=0
Xl +x34+xIx34+A1—pu1+u=0
X24+x1+xIx24+ A1 — 1 —2u2 =0

Also 1 (x1 —x2 —x3) 4+ po(x1 + x2—-2x3) =0

Along with above equation gl(x1,x2,x3) = x1 + x2 4+ x3 —3 = 0 is used to
obtain the extremal points as given below.

Case 1: w1 = 0. The following solutions are obtained

(1, x2,x3, A1, 1, p2)
= (_1,0747 1,070)7(370»07_35070)7(17 1’ 1’_3’0’0)’(_1’57_17 1’0’0)

All the solutions are valid as 1 > 0, and p, > 0
Case 2: up = 0. The following solutions are obtained

(x1,x2, X3, A1, 1, 2) = (—=1,0,4,1,0,0)(3,0,0,-3,0,0)

333 9 9
( ————— 0) (1,1,1,-3,0,0)(-1,5,—-1,1,0,0)

All the solutions obtained above are valid as 1 > 0, and u, > 0.



Chapter 6
Matlab Illustrations

6.1 Generation of Multivariate Gaussian Distributed
Sample Outcomes with the Required Mean Vector
‘My’ and Covariance Matrix ‘Cy’

Consider the transfer of random variables X = Rcos® and Y = Rsin ®, where
‘®’ is uniformly distributed between 0 and 2 and ‘R’ is Rayleigh density function
as described below. Also R and ‘®’ are independent random variables.

The Rayleigh density function is given as follows

roo_r2
JR(r) = e 22V¥r >0
o

= 0, elsewhere

The corresponding distribution function is given as follows.

2

Fr(r) =1—¢ 202¥r >0

= 0, elsewhere

The joint density function of X and Y represented as fxy(x, y) is obtained using
Jacobian as follows.

Ferx,y) = |}—|fR@(r(x,y), O(x. 7))

The solution for the above set of equation gives R = +/X2+Y2 and ® =
tan~! (%) The Jacobian matrix at the solution is obtained as follows.

X d0X
9R 90 Y
OR 00 | (g = VX24+Y2,0=tan" ! = is obtained as
aYy adYy X
JR 00
R=+vX2+7Y2
E.S. Gopi, Mathematical Summary for Digital Signal Processing 197

Applications with Matlab, DOI 10.1007/978-90-481-3747-3_6,
(© Springer Science+Business Media B.V. 2010
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Thus the joint density function of
1 Y
- T ()
fir(w3) = — s o (VAT + 210 ™ (5

= ey (V) o (7 (7))

1 (\/x2 +y2) _(x2+ivz) 1
20 —
2

e 202

1
B V2 o2 V2 o2

Note that the density functions fx (x), fy(y) obtained above are the independent
Gaussian density function with variance o> and mean zero.

Thus the steps involved in generating the sample outcomes that is Gaussian dis-
tributed with mean = 0 and variance = o2 is summarized below.

e 7307 = fx(x) fr (¥)

Step 1: Generation of sample outcomes that is Rayleigh distributed from the
uniformly distributed sample outcomes

Consider the Uniformly distributed random variable be ‘U’ and Rayleigh distributed
random variable be ‘R’. Also Let R = g(U)

Fr(r)=P(R<r)=P@EU)<n=PU<g ()= Fy'®) =g @)
(As U is the uniformly distributed function).

= Fr() =g (1)
2
=1—e 22 =g lr)=u

2

. —r2 2
Solving for ‘r’, we gete 202 =1—u= ;7 = ln(llu)

1
ir:”Zozln( )
1—u
2

Note that the distribution function Fg(r) = 1 — ¢ 207 is valid only for positive
values of ‘r’. It is also noticed that the range for the u is from O to 1.

Thus to generate the outcomes with Rayleigh distributed, generate the out-
comes ‘u’, that is uniformly distributed over the range 0-1 and use the formula

r=,/202In (11Tu) to obtain the Rayleigh distributed outcomes.

Step 2: Generate the sample outcomes of the uniformly distributed random variable
‘0’ that ranges from O to 2 .
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4 E)>(1O4 Probability density function of the sample outcomes of the generated data

3.5+ B

pdf

150 -

o L 1 1 1 _
-6 -4 -2 0 2 4 6

Values

Fig. 6.1 Probability density function of the 10,000,000 samples generated using Matlab (Gaussian
distribution with mean = 0 and variance = 1)

Step 3: Compute X = Rcos® and Y = Rsin® to obtain the two sets of sample
outcomes that are independent Gaussian distributed with mean ‘0’ and variance o2
(Fig. 6.1).

Steps to Generate the Multivariate (say ‘N’) Gaussian distributed sample out-
comes Repeat the procedure described above to generate ‘N’ outcomes which are
individually Gaussian distributed with mean = 0 and variance = 1. Note that they
are independent in nature (i.e.) If we compute the co-variance matrix for the above
generated ‘N’ outcomes, it is identity matrix. Let the generated Multivariate Gaus-
sian distributed outcomes be represented as the outcomes of the random vector ‘X’.

Now the requirement is to obtain the outcomes of the Gaussian random vector
‘Y’ whose mean and co-variance matrix are represented as ‘Cy’ and ‘M’ respec-
tively the generated outcomes of the random vector ‘X’.

They are obtained using transformation matrix ‘A’ as described below.

Let Y = AX + b be the transformation equation which transforms the multi-
variate random variable X to the multivariate random variable ‘Y’, where ‘A’ is the
transformation matrix and ‘b’ is the column vector.

If ‘X’ is the Multivariate Gaussian distributed, then ‘Y’ is also the Multivariate
Gaussian distributed with Co-variance matrix Cy = ACx AT and the mean vector
‘Amyx + b’, where m x is the mean vector of the multivariate random variable X.
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The generated Multivariate Gaussian distributed outcomes has the Identity co-
variance matrix Cx and the mean vectormy = 0,

= Cy = AAT.
= Mean vector = b

Thus the requirement is to represent the required co-variance Cy matrix as the
product of A and A7 and hence the matrix ‘A’ is obtained. Then applying the trans-
formation Y = AX + b to obtain Multivariate Gaussian distributed outcomes with
the specified mean ‘b’ and the co-variance matrix Cy. Choose ‘b = my’ for the
specifications mentioned above.

Representing the matrix Cy as the product of AAT is obtained using Eigen de-
composition as described below.

Represent the matrix Cy = EDET, where E is the Eigen column matrix, in
which the columns are the orthonormal Eigen vectors obtained from the co-variance
matrix Cy and D is the Diagonal matrix with Diagonal elements filled up with the
corresponding Eigen values of the co-variance matrix Cy.

T
Cy = EDET = ED3 D3 ET = (ED%) (ED%) .
= A = (ED%) is obtained.

Using the obtained transformation matrix ‘A’, the outcomes of the random vector
‘X’ is transformed to the outcomes of the random vector ‘Y’ using the equation
Y = AX +my.

gengd.m

$m-file for generating the Multivariate Gaussian
distributed

$sample outcomes with zero mean vector and Identity

matrix

$co-variance matrix

for k = 1:2:10

u = rand(1,1000000) ;

r = sqrt(2*log(1./(1 — u)));

theta = rand(1,1000000) ."2%p1i;

Z1 = r.*cos (theta) ;
Z2 = r.*sin(theta) ;
x{k} = X;

x{k + 1} = Y;

end

CX = cov(cell2mat (X’)"’);
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The Co-variance matrix of the generated data X is computed as

1.0 0 0o 0o 0o 0 0 0 0 O
0 09 o0 0 0 O O O O O
0 0 90 0 0 0 0 O0 O
0 0 0o 1.0 0 0 0 O O
0 0 0 09 0 0 0 0 O

Cxy =
0 0 0 0 0 10 0 0 0 O
0 0 0 0 0 0 1.00 0 O
0 0 0 0 0 0 100 0 O
0 0 0 0 0 0 0 009 0
L O 0 o 0o 0o 0 0 O0 0 1.4

Note that the co-variance matrix of the generated sample outcomes is almost identity
matrix. (As expected)
Let mean vector my = [0.1 0.20.30.40.50.60.70.80.9 1.0] and

[0.1 02 03 04 05 06 07 08 09 1.07
02 04 06 08 10 12 14 16 18 2.0
03 06 09 12 15 18 21 24 27 3.0
04 08 12 16 20 24 28 32 36 4.0
05 1.0 15 20 25 30 35 40 45 5.0
06 12 18 24 30 36 42 48 54 6.0
07 14 21 28 35 42 49 56 63 70
08 1.6 24 32 40 48 56 64 72 8.0
09 18 27 36 45 54 63 72 81 9.0
1.0 20 30 40 5 60 70 8.0 9.0 10.0]

$m-file for generating the Multivariate Gaussian
distributed sample

$outcomes with mean vector my and the co-variance
matrix Co-

$variance matrix Cy as displayed below

MY = 0.1:0.1:1.0;

CY = [1:1:10;2:2:20;3:3:30;4:4:40;5:5:50;6:6:60;7:7:
70;8:8:80;9:9:90;10:10:100]1*0.1;

$Representing the matrix CY as the product of two
matrix A and A as follows

$As the co-variance matrix is the symmetric matrix,
the eigen values are

$real

[P,Q] = eig(CY);

A = P*sgrt (abs(Q));
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for 1 = 1:2:10

r = rand(1,1000000) ;

sigma = 1;

R = sgrt(2*sigma”2*log(1./(1 — r)));
theta = rand(1,1000000) *2*pi;

u = R.*cos(theta) ;

v = R.*sin(theta) ;

[p1,gl] = hist(u,100)

[p2,g2] = hist(v,100)

data{i} = u

data{i+1} = v

end

X = cell2mat(data’);

Y = A*X + repmat (MY’,1,1000000) ;
CY = cov(Y');

The co-variance matrix computed for the generated Multivariate Gaussian distribu-
tion sample outcomes is as shown below (as expected) (Figs. 6.2 and 6.3).

[0.1 02 03 04 05 06 07 08 09 1.07
02 04 06 08 10 12 14 16 18 2.0
03 06 09 12 15 18 21 24 27 3.0
04 08 12 16 20 24 28 32 36 4.0
05 1.0 15 20 25 30 35 40 45 50
06 12 18 24 30 36 42 48 54 6.0
07 14 21 28 35 42 49 56 63 70
08 1.6 24 32 40 48 56 64 72 8.0
09 18 27 36 45 54 63 72 81 90

1.0 20 30 40 5 60 7.0 80 90 10.04

6.2 Bacterial Foraging Optimization Technique

Evolutionary algorithms that are formulated from the inspiration of the natural
biological behavior are called Biologically Inspired Algorithms (BIA).Bacterial
Foraging is one of the BIA inspired from the Foraging behavior of the E-Coli Bacte-
ria. During Foraging, Bacteria tries to move towards the region where more nutrients
are available. (i.e.) Moving towards the region where the concentration of nutrients
are large. They pass through the neutral medium and they avoid poisonous sub-
stances. This biological behavior is inspired to formulate the Bacterial Foraging
Optimization technique as described below.

Consider the unconstrained optimization problem of minimizing the function
J(X), X e R
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Fig. 6.2 Sample outcomes of the 10-Variate [X1 X2 X3...X10] Gaussian distribution with mean
zero and Identity Co-variance matrix
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Fig. 6.3 Sample outcomes of the 10-Variate [Y1 Y2 Y3...Y10] Gaussian distribution with mean
My and Co-variance matrix Cy

Analogy: The vector X can be viewed as the position of the Bacteria

J(X) < 0 can be treated as the presence of Nutrients
J(X) = 0 can be treated as the Neutral
J(X) > 0 can be treated as the presence of Toxic substances
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Step 1: Initialization of the population

Initialize the positions of ‘N’ (say) number of Bacteria. Let it be X! X2 x3,...xN
corresponding to ‘N’ Bacterium b, b2, b3, ... bN. The position vector X1 x2,
X3, ... X" is the initial population.

Step 2: Chemo taxis

It is tendency of the bacteria to move towards the sources of Nutrients. It consists of
two stages. They are the following

(a) Tumbling: It is the tendency of the bacteria to change their positions in search
of Nutrients. Let X/, be the next position of the i Bacteria whose current

new

position is X'. They are related as described below.

X! =X+ co, where p = A eR™

new

A

vV ATA
such that each element of the vector A is in the range [—1 1]. @ is the unit walk
in random direction. ‘c’ is called as chemo tactic step size. The new positions
are computed fori = 1,2, ... N

(b) Swimming:
Bacterium will tend to keep on moving in the particular direction if it is in the
direction that is rich in nutrients.

Mathematically if J (X,,) < J(X'), then another swimming in the same direc-
tion (¢) is taken by the i Bacteria and it can be continued upto Nj steps. After the
completion of N; steps Bacteria goes to the step 3.

If J (X!,,) = J(X"), Bacteria comes out of the tumbling stage and goes to the
step 3.

Step 3: Reproduction

After step 2, best ‘N/2° (50%) bacteria measured in terms of its Health are survived.
The survived Bacterium are subjected to reproduction to obtain ‘N’ Bacterium as
described below.

Health of the Bacteria is measured in terms of J(X). If the functional value
J(X) is less, then the corresponding Bacteria is healthier. Compute J(X') for
i = 1,2,...N. Arrange them in ascending order. First ‘N/2’ Bacterium and the
corresponding positions are selected Let the positions be [Y1, Y2, Y3, ... YN/2].
Every Bacteria is split into two Bacterium and are placed in the same posi-
tions. Thus new set of positions corresponding to ‘N’ Bacterium are given as
YLyl vy2 y2 y3 y3 . YN2yN?2 = [z',722,73,...ZN] (say). Go to
step 2. Repeat 2 and 3 for finite number of iterations. Then Go to step 4.

Step 4: Elimination-dispersion
In real world process, some of the bacterium (i.e.) with probability ‘P;’ are dis-
persed to new locations. This is simulated as shown below.

Generate the random vector of size 1 x N. Sort the elements of the vector in the
ascending order. Find the index corresponding to the first N* P; sorted numbers.
Choose the positions of the Bacterium corresponding to the obtained index. They
are replaced with the randomly generated positions on the optimization domain.
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The positions thus obtained are treated as the current best positions. Go to step
2. Repeat the steps 2—4 for the finite number of iterations.

The best value in every iteration can also be tracked and the best among them
can be declared as the optimal solution.

Social Communication
In nature there is the social communication between Bacterium such that they are
neither close together nor far away from each other. This is done by releasing the
chemical by the Bacteria. The chemical signal can be either attractant or Repellent.
If the chemical signal released by the particular Bacteria is attractant in nature, then
it attracts other Bacteria to come to its position. On the contrary if the chemical
signal released by the particular Bacteria is Repellent in nature, it doesn’t allow
other Bacteria to come to its position.

The social communication between Bacterium can be simulated using the
modified objective function to be computed for the i”* position corresponding
to the i position Bacteria as given below.

Jmod(X") = J(X') + Jsocial(X"), where

Jmod is the modified Objective function computed for the i” position X corre-
sponding to the i Bacteria. J(X') is the actual objective function value computed
for the i position X' corresponding to the i Bacteria. social(X") is the attrac-
tant cum repellent signal computed for the i position X’ corresponding to the i ™
Bacteria as displayed below.

Let dy = ||X' = X7

N
Jsocial(X') = M Z e Ry _ Z e Adi
j=1 j=1

Note that if the first term Z?;l e~Rdi is reduced if distance between the i position
and others are made large and hence it acts as the repellent signal. Similarly the
second term — Z;V=1 e Rdi is reduced if the distance between the i position and
others are made small and hence it acts as the attractant signal. ‘R’ is the Repellent
factor and ‘A’ is the attractant factor.

The convergence graph obtained using Bacterial Foraging technique for mini-
mizing the function J(X) = (x1°2 — 92 + (x2"2 — 92 + (x3"2 — 16)"2is
shown in the figure given below (Fig. 6.4). The corresponding Matlab program is
also displayed below

After 100 iteration, the best solution obtained is [2.9025 2.9512 4.0720]

bactalgo.m

%Bacterial Foraging Technique

%Edit bactfun.m to insert the objective function to
be minimized

%TRACEERROR traces the minimum error obtained in
every iteration
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Convergence of Bacterial Foraging Algorithm
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Fig. 6.4 Illustration of the convergence of the bacterial foraging algorithm

%TRACEVAL traces the corresponding best solution in
every iteration

%jsocial regulates the social communication between
bacterium.

posl = rand(1,100)*10;

pos2 = rand(1,100)*10;

pos3 = rand(1,100)*10;

vect = [posl;pos2;pos3]’;

figure

TRACEVALUE = [];

TRACEVECTOR = [];

c = 1;

for i = 1:1:100
Jcurvalue (i) = bactfun(vect (i, :));
Jswcurvalue (i) = Jcurvalue(i) 4+ jsocial (vect(i,:),
vect) ;

End

$Iteration starts
for iter = 1:1:100
for dispersal = 1:1:50

for survey = 1:1:50

for bact = 1:1:100
posl = rand(1,1)*10;
pos2 = rand(1,1)*10;
pos3 = rand(1,1)*10;
phi = [posl pos2 pos3];

newvect = vect (bact,:) -+ c*phi;
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Jcurvaluenew (bact) = bactfun (newvect) ;
Jswcurvaluenew (bact) = Jcurvalue (bact) + jsocial
(newvect, vect) ;
%m is the maximum number swimming
for m = 1:1:25
if (Jswcurvaluenew(bact) < Jswcurvalue (bact))
vect (bact, :) = newvect;
Jcurvalue (bact) = bactfun (vect (bact, :)) ;
Jswcurvalue (bact) = Jcurvalue (bact) 4+ jsocial
(vect (bact, :) ,vect) ;
newvect = vect (bact,:) + c*phi;
Jcurvaluenew (bact) = bactfun (newvect) ;
Jswcurvaluenew (bact) = Jswcurvaluenew (bact) -+
jsocial (newvect,vect) ;
else
m = 25;
end
end
end
%Reproduction of bacteria
[p,g] = sort (Jswcurvaluenew) ;
vectl = vect(g(l:1:50),:);
vect = [vectl;vectl];
end
%Dispersal of bacteria with probability 0.2
[p,g] = sort(rand(1l,100));
tempvectl = vect(g(l1:1:80),:);
posl = rand(1,20)*10;
pos2 = rand(1,20)*10;
pos3 = rand(1,20)*10;

tempvect2 = [posl;pos2;pos3]’;

vect = [tempvectl;tempvect2];

for 1 = 1:1:100
Jcurvalue (i) = bactfun(vect (i, :)) ;
Jswcurvalue (i) = Jcurvalue (i) + jsocial (vect (i, :),
vect) ;

end

end

[p,g] = sort (JIswcurvalue) ;

temp = vect(g(l),:);

TRACEVALUE = [TRACEVALUE bactfun (temp)];

TRACEVECTOR = [TRACEVECTOR; temp] ;

hold on

plot (TRACEVALUE)
pause (0.2) ;
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end
%Solution
for 1 = 1:1:100
Jcurvalue (i) = bactfun(vect (i, :));
end
[p,g] = sort (TRACEVALUE)

FINALRES = TRACEVECTOR (g (1), :);
jsocial.m

function [res] = jsocial (a,vect)
M = 1;

b = repmat(a, [100 1]);

vect = vect — b;

vect = vect.”2;

vect sum(vect’) ;

Wa =
Wr = ;

resl sum (exp (vect™ (—Wa) ) ) ;

res2 = sum(exp (vect™ (—Wr))) ;
bactfun.m

function [res] = bactfun(z);

p = z(1);

qa = z(2);

r = z(3);

res = (p"2 =92+ (@2 — N2 + ("2 — 16)"2;

7

ool

6.3 Particle Swarm Optimization

The Particle swarm optimization is the biologically inspired algorithm inspired from
the behavior of birds on deciding the optimal path to move from the particular source
to the destination. Consider the task of movement of group of birds (say A,B,C) from
the particular source point ‘S’ to the destination ‘D’. Let ‘A’ (which is currently at
point P4) the decides to move towards the point P/. Similarly the bird ‘B’ and ‘C’
decides to move towards the point Py and P from Pp and Pc respectively. Let
the distance between the point P(. and the destination point ‘D’ is less compared
to the distance between the point Py and the destination point ‘D’ and the distance
between the point Py and the destination point ‘D’. Thus the final decision taken
by the bird ‘B’ is the combination of the individual decision taken by bird ‘B’ and
the best global decision taken by the neighboring birds (In the current scenario, the
best global decision is the decision taken by the bird ‘C’).

Mathematically the bird moves from the current position to the next position
described as follows.

The next position moved by the bird ‘B’ is

Pp + gp (P¢ — Pg) + I (P — PB)
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Similarly the next position moved by the bird ‘A’ and ‘C’ are given below

Py+ g4 (Pc—Pa)+14(Pp— Py)
Pc + gc (P- — Pc)

where ‘g4, gB, gc’ are the global constants and ‘I 4, /g’ are the local constants.
Consider the unconstrained optimization problem of minimizing the function

J(X), X e R™.

Analogy:

The vector ‘X’ in the above definition is treated as the current position of the bird

in the PSO algorithm. The corresponding value J(X) is the distance between the

current position of the bird and the destination. The PSO algorithm identifies the

shortest path as described above so that it reaches the destination as early as possible.

(i.e.) Identifying the optimal value of X such that J(X) is minimized

Algorithm

Step 1: Initialize the positions of ‘N’ number of birds. Letitbe X1, X», X3,... Xn.
Step 2: Obtain the next positions of the ‘N’ birds using the combination of local
decision taken by the individual birds and the best decision taken by the neighboring
birds (as described earlier).

Step 3: The next positions thus obtained are treated as current positions.

Local decisions taken by the individual birds for the next move are taken as per
the procedure given below.

If the distance between current local decision taken by the i bird position and

the destination is greater than the distance between the next position mentioned in
the step 2 and the destination, next position is treated as the local decision taken
by the i bird position for the next movement. Otherwise the current local decision
taken by the i bird position is considered as the local decision for the next move
also. Repeat step 2 and 3 for the finite number of iterations.
Step 4: Best position among the ‘N’ positions of the birds in the last iteration cor-
responding to ‘N’ birds is declared as the final solution for minimizing the function
J(X). Best position among the ‘N’ positions in the final iteration is the position
whose distance from the destination is minimum among all other positions.

(i.e.) Best position= arg; (| X;-D|),i =1,2,3,...N

The convergence graph obtained using Particle Swarm Optimization for mini-
mizing the function J(X) = 2(x1 — 4)"2 4+ 4(x2 — 3)"2 4+ 5(x3 — 6)"2 is shown
in the Fig. 6.5. The corresponding Matlab program is also displayed below.

x1
For the problem mentioned above the vector of the form | x2 | is treated as the
x3
arbitrary position of the bird. PSO algorithm is performed to obtain the optimal
value of the position of the bird such that its distance from the destination is mini-
mized. The distance between the current position of the bird and the destination is
measured using the objective function J(X) and hence the function is minimized.
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Fig. 6.5 Illustration of the convergence of the PSO algorithm

Immediate after fifth iteration, the solution obtained using PSO algorithm is given
as [3.9999 3 6] and the is corresponding

6.4 Newton’s Iterative Method

Consider the problem of minimizing the function f(x1,x2,x3) = 2(x1 — 4)? +
4(x2—3)2 4+ 5(x3 —6)?
Expressing the above function using Taylor series we get the following.

x1 Axl x1 x1 D2 x1
fllx2|+ax2||=f]|x2|]|+Dr|]|x2 +7f2 2| | +...
x3 Ax3 x3 x3 ’ x3

where D = Axl% + Ax2axi2 + Ax3ag—3.

The above series can also be represented in the matrix form as shown below

x1 Axl
flx2]+ ]| Ax2
x3 Ax3

af

x1 ox1

=f1|x2|]+[Ax] Ax2 A3] i

3 ox1

X af

ox1
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~ 9% f 92 f 2 f ]
0x12  0dx19x2 0x10x3

Axl1
2 2 2
+[Ax1 Ax2 A3)] s s s Ax2
0x20x1 0x22  0x20x3
Ax3
92 f 92 f 0% f
L 0x30x1 0x30x2  0x3%2

+ ...
+1
x1 Axl1 Xy x1 Xy
Let | x2 |4+ | Ax2 | = [ x3T! | and | x2 | = | xZ
x3 Ax3 xg'H x3 X"

Rewriting the Taylor series using the notations used above we get,

X+ f
1 _ +1 +1 +1
Pl = o e g -]
n+1 n
X3 X3
mof
ox
% g
rl | A EERE B B e
2 o
af 3
| 0x3
r 2 f 02 f 2f 7
8x1 Bxl 8x1 3X2 Bxl 8X3 x;1 x;z+l o x;1
2 2 2
o f o f s at | x» PG ) R
8x28x1 8)628)62 8)628)63 2 2 2
X XLy
82f 82f 32f 3 3 3
_8x38x1 8)638)62 8)638)63 -
x¥+1
If we want to find out the roots of the above equation, we equate f x;’H =0
xg+1
x{’“
and solve for the vector xg’ +1 | as shown below
n+1

X3
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(Considering only first two terms)

X1
A=l —a gr g g
X3
af
E xt
% at | x5
3X2
af X3
ox3
af 717!
xt E xY
SAC R BRI RV | P | FeS B P
)| of 2
ox3

The above mentioned equation is called Newton’s method of computing the roots of
the multivariable equation f(x1, x2, x3).

Note:
xy X7

Note that % at | xJ is the column vector and hence the inverse mentioned
af X3
dx3 3

in the equation is the pseudo inverse (see Chapter 1 for details).
Consider the Taylor series equation as mentioned below

n+1 n
X1 X1
n+1 _ n+1 n n+1 n n+1 n
Vil BB =f||x3 +[x1 X1 Xy T Xy X3 —x3]
n+1 n
X3 X3
o T
0x1 n
of 1
L ae | | ]+
3X2
n
af 3
3X3
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X1
Differentiating with respect to the vector | x, | on both sides we get the following
X3
f
Xt ox1 X7
Vi fac |t [ | = | 22 | {ar || |+
el ax2
X3 af X3
0x3
r 9 f 2 f 2 f
8x123x1 Bxlzaxz 3X128X3 X? X;H-l —X?
v/ rf '/ at | x% xg'H—xg
axzaxl 3)628)62 3)628)(3 n+1
2 2 2 X3 X3 — X3
°f °f 0° f
_8x38x1 8)638)62 3)638)63_
+1
X
Also to consider the point xg’H as the extremal point of the equation
+1
X3
+1
Xy
f(x1,x2,x3), then Vf | at xﬁ‘“ =0.
xn—i—l
3

Using the above condition and solving the expression for extremal point we get

x¥+1
x;t+1 —
Xyt
r S 02 f 2f
X;’ 8x1 3)(31 8x1 3)62 8)618)63
T A )
2 axzaxl 8X23X2 3)628)(3
xgl aZf 32f 32f
Lox30x; 0x30xp 0x30x3

af

x;z 8)(31 X;’

at | x3 i at | x3
0x2

X% of x5
ax3

Consider the problem of minimizing the function f(x1,x2,x3) = 2(x1 — 4)? +
4(x2—-3)% 4+ 5(x3—6)?
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Newton'’s iteration equation is formulated as shown below.

Xt xf 1/4 0 0 7[4(1-4)

g“ =|x|—-| 0 1/8 0 8 (x7 —3)

Xyt x4 0 0 1/10] |12 (x4 —o)
0
Let us initialize the extremum vector as | 0
0

Iterations are performed using Matlab and Error (vs) Iteration table is mentioned
below for illustration.

Iteration 1 2 3 4 5
Error 7.2 0.2880 0.0115 0.0005 0.0000

Note that Error function converges to zero immediate after reaching fifth iteration.

6.5 Steepest Descent Algorithm

Consider the problem of minimizing the function f(x1,x2,x3) = 2(x1 — 4)? +
4(x2—-3)% 4+ 5(x3—6)?
The Linear approximation of the curve f(x1, x2, x3) can be obtained as follows

f(xl +k)t1,)€2+k)t2,x3+k)t3)

A
af af of
= 1,x2,x3)+ k - =
= SOl a2, x3) + [31 ox2  ox3 |72
A3
(i.e)f(X +kA) = f(X)+kVfTA
A
Ao | is the unit vector and k is some scalar constant
A3
The maximum increase in the value of the function f(x1, x2, x3) (i.e.) f(x1 +
A
k A1,x2 + kAy,x3 4+ kA3) — f(x1,x2,x3) occurs when [% aax_fz %] Ao

3
is maximum. We also know from Cauchy-Schwarz inequality (see Chapter 4)
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A
i i A of of
that maximum value of the inner product [ Tl 33 3x3] A> | occurs only when
A3
A
A1 ax1
| =1 aic_fz , where ‘1’ is some scalar constant.
A3 of
0x3
.
A1 dx1
Similarly maximum decrease in the function occurs when | A, | = —/ %
A3 of
0x3
n
X1
Let | x% | be the current value of the vector X used in the steepest descent iter-
xn
2
n+1
1
ation algorithm. Then the next best value for the vector X represented as xg’“
n+1
X2

such that the vector is in the direction of decreasing function f(X) is given as
follows.

Error value (vs) lteration
250 T T T T T T T T T

200

150

Error value

100
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0 L i
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Fig. 6.6 Illustration of the convergence of the steepest descent algorithm
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af

x{’“ X7 %}}1

Wt = x| =1 302
n+1 n X
X5 X5 af

ox3

For the above problem the iterative equation is obtained as follows

+1
xy xy 4(x1— 4)
xé’“ =|x3|—1] 8(x2-3)
xé’“ X! 10 (x3 —6)
0
Let us initialize the vector = | 0 |. Iterations are performed using Matlab and the
0

convergence graph is plotted for illustration (Fig. 6.6).
The learning rate is chosen as [ = 0.01. After 100 iterations, function value
3.9325
reaches 0.0091 and the corresponding vector obtained is | 2.9993
5.9998
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